Tatiana A Michtchenko

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3113599/publications.pdf
Version: 2024-02-01

1 Extrasolar Planets in Meanâ $€$ Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions. Astrophysical Journal, 2003, 593, 1124-1133.
Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. Monthly Notices of theRoyal Astronomical Society, 2005, 365, 1160-1170.$5 \quad$ Evolution of Migrating Planet Pairs in Resonance. Celestial Mechanics and Dynamical Astronomy,1.42003, 87, 99-112.996 Modeling the 5:2 Mean-Motion Resonance in the Jupiterâ $€$ "Saturn Planetary System. Icarus, 2001, 149,357-374.$2.5 \quad 91$
$7 \quad$ Modelling the high-eccentricity planetary three-body problem. Application to the GJ876 planetary$4.4 \quad 90$
$7 \quad$ system. Monthly Notices of the Royal Astronomical Society, 2003, 341, 760-770.8 Resonant Structure of the Outer Solar System in the Neighborhood of the Planets. Astronomical$4.7 \quad 83$
Journal, 2001, 122, 474-481.
9 Origin of the Basaltic Asteroid 1459 Magnya: A Dynamical and Mineralogical Study of the Outer Main Belt. Icarus, 2002, 158, 343-359. 2.5 76
10 The Orbits of the Extrasolar Planets HD 82943c and b. Astrophysical Journal, 2005, 621, 473-481. 4.5
11 Modeling the 3-D secular planetary three-body problem. Icarus, 2006, 181, 555-571.2.56912 Dynamic portrait of the planetary $2 / 1$ mean-motion resonance $\hat{a} €^{\text {" }}$ I. Systems with a more massive outer4.4planet. Monthly Notices of the Royal Astronomical Society, 2008, 387, 747-758.
$5.1 \quad 68$
14 Stationary Orbits in Resonant Extrasolar Planetary Systems. Celestial Mechanics and Dynamical1.460Astronomy, 2006, 94, 411-432.
4.4 58Dynamics of two planets in co-orbital motion. Monthly Notices of the Royal Astronomical Society,
2010, 407, 390-398.

```
19 Tidal decay and orbital circularization in close-in two-planet systems. Monthly Notices of the Royal
Astronomical Society, 2011, 415, 2349-2358.
Astronomical Society, 2011, 415, 2349-2358.
```

4.4

52

Survival of Trojan-type companions of Neptune during primordial planet migration. Icarus, 2004, 167,
347-359.
2.5

47

21 A frequency approach to identifying asteroid families. Astronomy and Astrophysics, 2007, 475, 1145-1158.
5.1

44

Dynamics of Two Planets in the $3 / 2$ Mean-motion Resonance: Application to the Planetary System of the
1.4

41
Pulsar PSR B1257+12. Celestial Mechanics and Dynamical Astronomy, 2006, 94, 381-397.
23
2

On the mass determination of super-Earths orbiting active stars: the CoRoT-7 system. Astronomy and
5.1

41
25 Dynamical stability of terrestrial planets in the binary $\hat{l} \pm$ Centauri system. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2167-2177. 4.4 38
37Tidal evolution of close-in exoplanets in co-orbital configurations. Celestial Mechanics andDynamical Astronomy, 2013, 117, 59-74.
Modelling the secular evolution of migrating planet pairs. Monthly Notices of the Royal
27 Astronomical Society, 2011, 415, 2275-2292.
4.4 35Icarus, 2011, 216, 184-197.
2.5 34
Mineralogical characterization of Baptistina Asteroid Family: Implications for K/T impactor source.

A new analysis of the GJ581 extrasolar planetary system. Celestial Mechanics and Dynamical

A new analysis of the GJ581 extrasolar planetary system. Celestial Mechanics and Dynamical A new analysis of the GJ581 ex
Astronomy, 2012, 113, 49-62. A new analysis of the GJ581 ex
Astronomy, 2012, 113, 49-62.
1.4
1.4 33 3330 A frequency approach to identifying asteroid families. Astronomy and Astrophysics, 2009, 493, 267-282.5.131
4.7 29The Determinant Role of Jupiter's Great Inequality in the Depletion of the Hecuba Gap. AstronomicalJournal, 1998, 116, 1491-1500.1.4
Angular momentum exchange during secular migration of two-planet systems. Celestial Mechanics 32 and Dynamical Astronomy, 2011, 111, 161-178.
28
1.4 28Dynamics of the 3/1 planetary mean-motion resonance: an application to the HD60532 b-c planetary
system. Celestial Mechanics and Dynamical Astronomy, 2016, 124, 311-334.4.728
Planetary Migration and the Effects of Mean Motion Resonances on Jupiterâ€ ${ }^{\mathrm{TM}} \mathrm{s}$ Trojan Asteroids.Astronomical Journal, 2001, 122, 3485-3491.
35 Modeling close encounters with massive asteroids: a Markovian approach. Astronomy and
Astrophysics, 2007, 465, 315-330.5.127
The inner region of the asteroid Main Belt: a spectroscopic and dynamic analysis. Astronomy and 5.1 40
Astrophysics, 2006, 459, 969-976.

37The depletion of the Hecuba gap vs the long-lasting Hilda group. Planetary and Space Science, 1998, 46, $1425-1432$.
38On the Stellar Velocity Distribution in the Solar Neighborhood in Light of Gaia DR2. Astrophysical Journal Letters, 2018, 863, L37.
Dynamics of Two Planets in the 2/1 Mean-Motion Resonance. Celestial Mechanics and Dynamical Astronomy, 2004, 89, 201-234.

40 On the V-type asteroids outside the Vesta family. Astronomy and Astrophysics, 2007, 473, 967-978.
5.1

23

The Dynamical Origin of the Local Arm and the Sun's Trapped Orbit. Astrophysical Journal, 2017, 843,
48.

Multi-planet extrasolar systems â $€$ " detection and dynamics. Research in Astronomy and Astrophysics,
2012, 12, 1044-1080.

Secular dynamics of S-type planetary orbits in binary star systems: applicability domains of first- and
second-order theories. Celestial Mechanics and Dynamical Astronomy, 2016, 124, 405-432.
1.4

20

Dynamic picture of the inner asteroid belt: implications for the density, size and taxonomic
distributions of real objects. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2499-2516.
4.4

Social capital and health status: Assessing whether the relationship varies between blacks and whites.	2.2
Psychology and Health, 2009, 24, 109-118.	

50 Chaotic transitions in resonant asteroidal dynamics. Celestial Mechanics and Dynamical Astronomy,
1.4

12
1996, 64, 93-105.

Formation and evolution of the two 4/3 resonant giants planets in HDâ€\% 200964. Astronomy and
Astrophysics, 2015, 573, A94.

Moving Groups as the Origin of the Vertical Phase Space Spiral in the Solar Neighborhood.
Astrophysical Journal, 2019, 876, 36.
4.5

Resonances and stability of extra-solar planetary systems. Proceedings of the International
Astronomical Union, 2004, 2004, 3-18.
$0.0 \quad 9$

A new scenario for the origin of the $3 / 2$ resonant system HDâ€\% $\% 45364$. Astronomy and Astrophysics, 2013,
560, A65.
5.1

```
55 Relativistic chaos in the anisotropic harmonic oscillator. Chaos, Solitons and Fractals, 2018, 117,
276-282.
```

The high-eccentricity libration of the Hildas II. Synthetic-theory approach. Celestial Mechanics and Dynamical Astronomy, 1993, 56, 121-129.
On the current distribution of main belt objects: Constraints for evolutionary models. Astronomy On the current distribution of main
and Astrophysics, 2016, 588, A11. 5.1 81.4

8
Dynamics of the Spiral-Arm Corotation and Its Observable Footprints in the Solar NeighborhoodFrontiers in Astronomy and Space Sciences, 2021, 8, .
Eclipse timing variation of GKâ€\%oVir: evidence of a possible Jupiter-like planet in a circumbinary orbit.
Monthly Notices of the Royal Astronomical Society, 2020, 497, 4022-4029.4.4Past and present dynamics of the circumbinary moons in the Pluto-Charon system. Astronomy andAstrophysics, 2022, 658, A99.5.1On the Lack of Asteroids in the Hecuba Gap. Celestial Mechanics and Dynamical Astronomy, 1997, 69,171-185.Dynamics of the Extrasolar Planetary Systems. , 0, , 151-178.
Primordial migration of co-orbital satellites as a mechanism for the horseshoe orbit of
Janusâ€\%oâ€"Epimetheus. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1973-1979. 63Orbital determination and dynamics of resonant extrasolar planetary systems. Proceedings of the

Adapting a gas accretion scenario for migrating planets infargo3d. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1599-1608.
4.4

Dynamical Maps of the Inner Asteroid Belt. Proceedings of the International Astronomical Union, 2009, 5, 240-243.
0.0

0

Tidal evolution of a close-in planet with a more massive outer companion. Proceedings of the International Astronomical Union, 2010, 6, 508-510.

