List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3113472/publications.pdf Version: 2024-02-01

		23567	18647
167	15,513	58	119
papers	citations	h-index	g-index
173	173	173	19267
all docs	docs citations	times ranked	citing authors

Πλανιναν Δαιτένι

#	Article	IF	CITATIONS
1	PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1355-1363.	2.5	4,230
2	PDK1, the master regulator of AGC kinase signal transduction. Seminars in Cell and Developmental Biology, 2004, 15, 161-170.	5.0	715
3	The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation. Journal of Biological Chemistry, 2005, 280, 28492-28497.	3.4	321
4	Structure of the LKB1-STRAD-MO25 Complex Reveals an Allosteric Mechanism of Kinase Activation. Science, 2009, 326, 1707-1711.	12.6	287
5	High-Resolution Structure of the Pleckstrin Homology Domain of Protein Kinase B/Akt Bound to Phosphatidylinositol (3,4,5)-Trisphosphate. Current Biology, 2002, 12, 1256-1262.	3.9	273
6	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	27.8	272
7	Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nature Immunology, 2016, 17, 712-720.	14.5	265
8	Crystal Structure and Binding Properties of the Serratia marcescens Chitin-binding Protein CBP21. Journal of Biological Chemistry, 2005, 280, 11313-11319.	3.4	257
9	BslA is a self-assembling bacterial hydrophobin that coats the <i>Bacillus subtilis</i> biofilm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13600-13605.	7.1	244
10	Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochemical Journal, 2003, 375, 531-538.	3.7	243
11	Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15429-15434.	7.1	196
12	Structure of Human Chitotriosidase. Journal of Biological Chemistry, 2002, 277, 25537-25544.	3.4	185
13	Binding to serine 65â€phosphorylated ubiquitin primes Parkin for optimal <scp>PINK</scp> 1â€dependent phosphorylation and activation. EMBO Reports, 2015, 16, 939-954.	4.5	183
14	Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO Journal, 2006, 25, 1569-1578.	7.8	181
15	Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature, 2018, 556, 381-385.	27.8	178
16	High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO Journal, 2002, 21, 4219-4228.	7.8	176
17	Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO Journal, 2004, 23, 3918-3928.	7.8	167
18	Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. FEBS Journal, 2004, 271, 253-262.	0.2	164

#	Article	IF	CITATIONS
19	Proteome Wide Purification and Identification of <i>O</i> -GlcNAc-Modified Proteins Using Click Chemistry and Mass Spectrometry. Journal of Proteome Research, 2013, 12, 927-936.	3.7	151
20	The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding to Different Host Surfaces. PLoS Pathogens, 2012, 8, e1002373.	4.7	150
21	Structure and Mechanism of Chitin Deacetylase from the Fungal PathogenColletotrichum lindemuthianumâ€,‡. Biochemistry, 2006, 45, 9416-9426.	2.5	149
22	<i>O</i> -GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO Journal, 2012, 31, 1394-1404.	7.8	138
23	GlcNAcstatin:Â a Picomolar, SelectiveO-GlcNAcase Inhibitor That Modulates IntracellularO-GlcNAcylation Levels. Journal of the American Chemical Society, 2006, 128, 16484-16485.	13.7	136
24	Structure-Based Exploration of Cyclic Dipeptide Chitinase Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 5713-5720.	6.4	134
25	Analysis of the LKB1-STRAD-MO25 complex. Journal of Cell Science, 2004, 117, 6365-6375.	2.0	130
26	Pseudokinases-remnants of evolution or key allosteric regulators?. Current Opinion in Structural Biology, 2010, 20, 772-781.	5.7	130
27	Structure and Ligand-induced Conformational Change of the 39-kDa Glycoprotein from Human Articular Chondrocytes. Journal of Biological Chemistry, 2003, 278, 30206-30212.	3.4	125
28	O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nature Chemical Biology, 2012, 8, 969-974.	8.0	123
29	ATP and MO25α Regulate the Conformational State of the STRADα Pseudokinase and Activation of the LKB1 Tumour Suppressor. PLoS Biology, 2009, 7, e1000126.	5.6	118
30	Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Biochemical Journal, 2003, 375, 255-262.	3.7	116
31	Mutation of the PDK1 PH Domain Inhibits Protein Kinase B/Akt, Leading to Small Size and Insulin Resistance. Molecular and Cellular Biology, 2008, 28, 3258-3272.	2.3	115
32	The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nature Structural and Molecular Biology, 2015, 22, 744-750.	8.2	114
33	High Resolution Crystal Structures of Siglec-7. Journal of Biological Chemistry, 2003, 278, 3372-3377.	3.4	109
34	Specificity and Affinity of Natural Product Cyclopentapeptide Inhibitors against A. fumigatus, Human, and Bacterial Chitinases. Chemistry and Biology, 2005, 12, 65-76.	6.0	109
35	Methylxanthine Drugs Are Chitinase Inhibitors: Investigation of Inhibition and Binding Modes. Chemistry and Biology, 2005, 12, 973-980.	6.0	108
36	Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO Journal, 2008, 27, 2780-2788.	7.8	102

#	Article	IF	CITATIONS
37	The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochemical Journal, 2006, 394, 545-555.	3.7	95
38	High-resolution structures of a chitinase complexed with natural product cyclopentapeptide inhibitors: Mimicry of carbohydrate substrate. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9127-9132.	7.1	93
39	Pound-Wise but Penny-Foolish. Structure, 2003, 11, 1051-1059.	3.3	90
40	Structural insights into the recognition of substrates and activators by the OSR1 kinase. EMBO Reports, 2007, 8, 839-845.	4.5	89
41	Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biology, 2011, 1, 110012.	3.6	88
42	Structures ofBacillus subtilisPdaA, a family 4 carbohydrate esterase, and a complex withN-acetyl-glucosamine. FEBS Letters, 2004, 570, 13-19.	2.8	83
43	GlcNAcstatins are nanomolar inhibitors of human <i>O</i> -GlcNAcase inducing cellular hyper- <i>O</i> -GlcNAcylation. Biochemical Journal, 2009, 420, 221-227.	3.7	83
44	Siglec-7 Undergoes a Major Conformational Change When Complexed with the α(2,8)-Disialylganglioside GT1b. Journal of Biological Chemistry, 2006, 281, 32774-32783.	3.4	82
45	Natural product family 18 chitinase inhibitors. Natural Product Reports, 2005, 22, 563.	10.3	79
46	PAS Domains. Journal of Biological Chemistry, 2003, 278, 18434-18439.	3.4	73
47	TAK1-binding protein 1 is a pseudophosphatase. Biochemical Journal, 2006, 399, 427-434.	3.7	73
48	Kinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis. Biochemical Journal, 2006, 393, 447-457.	3.7	72
49	Structure of Saccharomyces cerevisiae Chitinase 1 and Screening-Based Discovery of Potent Inhibitors. Chemistry and Biology, 2007, 14, 589-599.	6.0	72
50	Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. Journal of Biological Chemistry, 2017, 292, 12621-12631.	3.4	72
51	Crystal Structures of Allosamidin Derivatives in Complex with Human Macrophage Chitinase. Journal of Biological Chemistry, 2003, 278, 20110-20116.	3.4	71
52	Structure of PINK1 and mechanisms of Parkinson's disease-associated mutations. ELife, 2017, 6, .	6.0	71
53	Crystal structure of the liganded SCP-2-like domain of human peroxisomal multifunctional enzyme type 2 at 1.75 Ã resolution 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 313, 1127-1138.	4.2	70
54	The structure of siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design. Biochemical Journal, 2006, 397, 271-278.	3.7	70

#	Article	IF	CITATIONS
55	Phosphorylation of Synaptic Vesicle Protein 2A at Thr84 by Casein Kinase 1 Family Kinases Controls the Specific Retrieval of Synaptotagmin-1. Journal of Neuroscience, 2015, 35, 2492-2507.	3.6	70
56	Essential dynamics of DNA containing a cis.syn cyclobutane thymine dimer lesion. Nucleic Acids Research, 1998, 26, 1939-1946.	14.5	69
57	Molecular Mechanisms of Yeast Cell Wall Glucan Remodeling. Journal of Biological Chemistry, 2009, 284, 8461-8469.	3.4	67
58	O-GlcNAc transferase inhibitors: current tools and future challenges. Biochemical Society Transactions, 2016, 44, 88-93.	3.4	65
59	Crystal structure of MO25α in complex with the C terminus of the pseudo kinase STE20-related adaptor. Nature Structural and Molecular Biology, 2004, 11, 193-200.	8.2	62
60	Substrate and product analogues as human O-GlcNAc transferase inhibitors. Amino Acids, 2011, 40, 781-792.	2.7	60
61	Structure-Based Dissection of the Natural Product Cyclopentapeptide Chitinase Inhibitor Argifin. Chemistry and Biology, 2008, 15, 295-301.	6.0	59
62	Human OGA binds substrates in a conserved peptide recognition groove. Biochemical Journal, 2010, 432, 1-12.	3.7	58
63	Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proceedings of the United States of America, 2019, 116, 14961-14970.	7.1	58
64	The cyclic dipeptide CI-4 [cyclo-(l-Arg-d-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochemical Journal, 2002, 368, 23-27.	3.7	57
65	Bisubstrate UDP–peptide conjugates as human O-GlcNAc transferase inhibitors. Biochemical Journal, 2014, 457, 497-502.	3.7	57
66	Lead Optimization of a Pyrazole Sulfonamide Series of <i>Trypanosoma brucei</i> <i>N</i> -Myristoyltransferase Inhibitors: Identification and Evaluation of CNS Penetrant Compounds as Potential Treatments for Stage 2 Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014, 57, 9855-9869.	6.4	57
67	Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 103-111.	2.3	56
68	Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochemical Journal, 2012, 446, 149-157.	3.7	55
69	Screening-based Discovery and Structural Dissection of a Novel Family 18 Chitinase Inhibitor. Journal of Biological Chemistry, 2006, 281, 27278-27285.	3.4	53
70	Molecular mechanisms of O-GlcNAcylation. Current Opinion in Structural Biology, 2008, 18, 551-557.	5.7	53
71	Cell-Penetrant, Nanomolar O-GlcNAcase Inhibitors Selective against Lysosomal Hexosaminidases. Chemistry and Biology, 2010, 17, 1250-1255.	6.0	52
72	A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nature Chemical Biology, 2017, 13, 882-887.	8.0	51

5

#	Article	IF	CITATIONS
73	The crystal structure of Δ3-Δ2-enoyl-CoA isomerase. Journal of Molecular Biology, 2001, 309, 845-853.	4.2	50
74	Elevated <i>O</i> -GlcNAc Levels Activate Epigenetically Repressed Genes and Delay Mouse ESC Differentiation Without Affecting NaÃ ⁻ ve to Primed Cell Transition. Stem Cells, 2014, 32, 2605-2615.	3.2	50
75	O-GlcNAcase: Promiscuous Hexosaminidase or Key Regulator of O-GlcNAc Signaling?. Journal of Biological Chemistry, 2014, 289, 34433-34439.	3.4	50
76	Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Nature Structural and Molecular Biology, 2019, 26, 1071-1077.	8.2	50
77	Chemical Dissection of the Link between Streptozotocin, O-GlcNAc, and Pancreatic Cell Death. Chemistry and Biology, 2008, 15, 799-807.	6.0	48
78	Synergy of Peptide and Sugar in O-GlcNAcase Substrate Recognition. Chemistry and Biology, 2012, 19, 173-178.	6.0	48
79	Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biology, 2017, 7, 170078.	3.6	48
80	Interactions of a Family 18 Chitinase with the Designed Inhibitor HM508 and Its Degradation Product, Chitobiono-Î-lactone. Journal of Biological Chemistry, 2004, 279, 3612-3619.	3.4	47
81	Structure of a bacterial putative acetyltransferase defines the fold of the human <i>O</i> -GlcNAcase C-terminal domain. Open Biology, 2013, 3, 130021.	3.6	47
82	Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins. Biochemical Journal, 2016, 473, 1693-1702.	3.7	47
83	Acetazolamide-based fungal chitinase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 8334-8340.	3.0	46
84	A Structural and Biochemical Model of Processive Chitin Synthesis. Journal of Biological Chemistry, 2014, 289, 23020-23028.	3.4	46
85	<scp>GacA</scp> is essential for <scp>G</scp> roup <scp>A <i>S</i></scp> <i>treptococcus</i> and defines a new class of monomeric d <scp>TDP</scp> â€4â€dehydrorhamnose reductases (<scp>RmlD</scp>). Molecular Microbiology, 2015, 98, 946-962.	2.5	46
86	Analyzing Airway Inflammation with Chemical Biology: Dissection of Acidic Mammalian Chitinase Function with a Selective Drug-like Inhibitor. Chemistry and Biology, 2011, 18, 569-579.	6.0	44
87	Natural Product–Guided Discovery of a Fungal Chitinase Inhibitor. Chemistry and Biology, 2010, 17, 1275-1281.	6.0	41
88	A missense mutation in the catalytic domain of <i>O</i> â€GlcNAc transferase links perturbations in protein <i>O</i> â€GlcNAcylation to Xâ€linked intellectual disability. FEBS Letters, 2020, 594, 717-727.	2.8	40
89	Sequence, chromophore extraction and 3-D model of the photoactive yellow protein from Rhodobacter sphaeroides. BBA - Proteins and Proteomics, 1998, 1385, 1-6.	2.1	39
90	An efficient synthesis of argifin: A natural product chitinase inhibitor with chemotherapeutic potential. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4717-4721.	2.2	39

#	Article	IF	CITATIONS
91	Structural Basis of Reduction-dependent Activation of Human Cystatin F. Journal of Biological Chemistry, 2006, 281, 16570-16575.	3.4	39
92	Structure of the OSR1 kinase, a hypertension drug target. Proteins: Structure, Function and Bioinformatics, 2008, 73, 1082-1087.	2.6	39
93	The N-Acetyl-D-glucosaminylphosphatidylinositol De-N-acetylase of Glycosylphosphatidylinositol Biosynthesis Is a Zinc Metalloenzyme. Journal of Biological Chemistry, 2005, 280, 22831-22838.	3.4	38
94	<i>N</i> -Myristoyltransferase Is a Cell Wall Target in <i>Aspergillus fumigatus</i> . ACS Chemical Biology, 2015, 10, 1425-1434.	3.4	38
95	An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. European Journal of Human Genetics, 2020, 28, 706-714.	2.8	38
96	Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nature Communications, 2015, 6, 7807.	12.8	37
97	Role of T-loop Phosphorylation in PDK1 Activation, Stability, and Substrate Binding. Journal of Biological Chemistry, 2005, 280, 18797-18802.	3.4	36
98	Solid-phase synthesis of cyclic peptide chitinase inhibitors: SAR of the argifin scaffold. Organic and Biomolecular Chemistry, 2009, 7, 259-268.	2.8	35
99	Crystal Structure of the PTPL1/FAP-1 Human Tyrosine Phosphatase Mutated in Colorectal Cancer. Journal of Biological Chemistry, 2005, 280, 8180-8187.	3.4	34
100	Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors. Bioconjugate Chemistry, 2018, 29, 1834-1840.	3.6	34
101	Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochemical Journal, 2010, 426, 281-292.	3.7	33
102	Dual functionality of O -GlcNAc transferase is required for Drosophila development. Open Biology, 2015, 5, 150234.	3.6	32
103	Conformational substates in different crystal forms of the photoactive yellow protein—Correlation with theoretical and experimental flexibility. Protein Science, 2000, 9, 64-72.	7.6	31
104	Essential Dynamics from NMR Clusters: Dynamic Properties of the Myb DNA-Binding Domain and a Hinge-Bending Enhancing Variant. Methods, 1998, 14, 318-328.	3.8	30
105	The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix. Cell Chemical Biology, 2018, 25, 513-518.e4.	5.2	30
106	Screeningâ€based discovery of drugâ€ŀike <i>O</i> â€GlcNAcase inhibitor scaffolds. FEBS Letters, 2010, 584, 694-700.	2.8	29
107	Genetic and structural validation of <i><scp>A</scp>spergillus fumigatus</i> â€ <scp>UDP</scp> â€ <i><scp>N</scp></i> â€acetylglucosamine pyrophosphorylase as an antifungal target. Molecular Microbiology, 2013, 89, 479-493.	2.5	29
108	Evidence for a Functional O-Linked N-Acetylglucosamine (O-GlcNAc) System in the Thermophilic Bacterium Thermobaculum terrenum. Journal of Biological Chemistry, 2015, 290, 30291-30305.	3.4	29

#	Article	IF	CITATIONS
109	Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis. Journal of Biological Chemistry, 2021, 296, 100439.	3.4	28
110	Crystal Structure of Carboxypeptidase A Complexed with d-Cysteine at 1.75 Ã â^' Inhibitor-Induced Conformational Changes,. Biochemistry, 2000, 39, 10082-10089.	2.5	27
111	Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite <i>Encephalitozoon cuniculi</i> . Protein Science, 2009, 18, 1197-1209.	7.6	27
112	Chemical tools to probe cellular <i>O</i> -GlcNAc signalling. Biochemical Journal, 2013, 456, 1-12.	3.7	27
113	Structural and kinetic differences between human and <i>Aspergillus fumigatus</i> <scp>D</scp> -glucosamine-6-phosphate <i>N</i> -acetyltransferase. Biochemical Journal, 2008, 415, 217-223.	3.7	26
114	Dynamic Properties of the Guanine Nucleotide Binding Protein α Subunit and Comparison of Its Guanosine Triphosphate Hydrolase Domain with That ofrasp21â€. Biochemistry, 1998, 37, 3137-3142.	2.5	24
115	Protein O-GlcNAcylation Is Required for Fibroblast Growth Factor Signaling in <i>Drosophila</i> . Science Signaling, 2011, 4, ra89.	3.6	24
116	Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis. Open Biology, 2013, 3, 130022.	3.6	24
117	Efficient synthesis of 1,3,7-substituted xanthines by a safety-catch protection strategy. Tetrahedron, 2007, 63, 12294-12302.	1.9	23
118	IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold. Journal of Biological Chemistry, 2012, 287, 22483-22496.	3.4	23
119	A Novel Allosteric Inhibitor of the Uridine Diphosphate <i>N</i> Acetylglucosamine Pyrophosphorylase from <i>Trypanosoma brucei</i> . ACS Chemical Biology, 2013, 8, 1981-1987.	3.4	23
120	Effects of hypo-O-GlcNAcylation on Drosophila development. Journal of Biological Chemistry, 2018, 293, 7209-7221.	3.4	23
121	First Synthesis of Argadin: A Nanomolar Inhibitor of Family-18 Chitinases. European Journal of Organic Chemistry, 2006, 2006, 5002-5006.	2.4	22
122	<i>Streptococcus mutans</i> SMU.623c Codes for a Functional, Metal-Dependent Polysaccharide Deacetylase That Modulates Interactions with Salivary Agglutinin. Journal of Bacteriology, 2009, 191, 394-402.	2.2	22
123	Genetic and structural validation of <i>Aspergillus fumigatus N</i> -acetylphosphoglucosamine mutase as an antifungal target. Bioscience Reports, 2013, 33, .	2.4	22
124	Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chemical Biology, 2020, 1, 98-109.	4.1	22
125	Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent <i>O</i> -GlcNAc transferase:UDP-GlcNAc complexes. Genes and Development, 2016, 30, 960-972.	5.9	21
126	Direct Monitoring of Protein O-GlcNAcylation by High-Resolution Native Mass Spectrometry. ACS Chemical Biology, 2017, 12, 2078-2084.	3.4	21

DAAN VAN AALTEN

#	Article	IF	CITATIONS
127	Novel Inositol Phospholipid Headgroup Surrogate Crystallized in the Pleckstrin Homology Domain of Protein Kinase Bα. ACS Chemical Biology, 2007, 2, 242-246.	3.4	20
128	Bisdionin C—A Rationally Designed, Submicromolar Inhibitor of Family 18 Chitinases. ACS Medicinal Chemistry Letters, 2011, 2, 428-432.	2.8	20
129	A mechanism-inspired UDP- <i>N</i> -acetylglucosamine pyrophosphorylase inhibitor. RSC Chemical Biology, 2020, 1, 13-25.	4.1	20
130	Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases. Nature Communications, 2019, 10, 1669.	12.8	18
131	Charge-Surrounded Pockets and Electrostatic Interactions with Small Ions Modulate the Activity of Retroviral Fusion Proteins. PLoS Pathogens, 2011, 7, e1001268.	4.7	17
132	Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice. Open Biology, 2019, 9, 190192.	3.6	17
133	Targeting a critical step in fungal hexosamine biosynthesis. Journal of Biological Chemistry, 2020, 295, 8678-8691.	3.4	16
134	O-GlcNAcase contributes to cognitive function in Drosophila. Journal of Biological Chemistry, 2020, 295, 8636-8646.	3.4	16
135	Glucoseâ€6â€phosphate as a probe for the glucosamineâ€6â€phosphate <i>N</i> â€acetyltransferase Michaelis complex. FEBS Letters, 2007, 581, 5597-5600.	2.8	15
136	Screening-based discovery of Aspergillus fumigatus plant-type chitinase inhibitors. FEBS Letters, 2014, 588, 3282-3290.	2.8	15
137	The Early Metazoan Trichoplax adhaerens Possesses a Functional O-GlcNAc System. Journal of Biological Chemistry, 2015, 290, 11969-11982.	3.4	15
138	Structural and biochemical characterization of a trapped coenzyme A adduct of <i>Caenorhabditis elegans</i> glucosamine-6-phosphate <i>N</i> -acetyltransferase 1. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1019-1029.	2.5	14
139	Structure of the photoactive yellow protein reconstituted with caffeic acid at 1.16â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 585-590.	2.5	13
140	Engineering Photocycle Dynamics. Journal of Biological Chemistry, 2002, 277, 6463-6468.	3.4	12
141	The transfer of transthyretin and receptor-binding properties from the plasma retinol-binding protein to the epididymal retinoic acid-binding protein. Biochemical Journal, 2002, 362, 265.	3.7	11
142	Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope. Retrovirology, 2008, 5, 70.	2.0	11
143	A sweet TET-Ã-tête-synergy of TET proteins and O-GlcNAc transferase in transcription. EMBO Journal, 2013, 32, 612-613.	7.8	11
144	An efficient and versatile synthesis of GlcNAcstatins—potent and selective O-GlcNAcase inhibitors built on the tetrahydroimidazo[1,2-a]pyridine scaffold. Tetrahedron, 2010, 66, 7838-7849.	1.9	9

#	Article	IF	CITATIONS
145	The citron homology domain as a scaffold for Rho1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
146	UDPâ€GlcNAc Analogues as Inhibitors of <i>O</i> â€GlcNAc Transferase (OGT): Spectroscopic, Computational, and Biological Studies. Chemistry - A European Journal, 2018, 24, 7264-7272.	3.3	8
147	O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry. ACS Chemical Biology, 2018, 13, 1353-1360.	3.4	8
148	Inhibitors against Fungal Cell Wall Remodeling Enzymes. ChemMedChem, 2018, 13, 128-132.	3.2	7
149	The conserved threonine-rich region of the HCF-1PRO repeat activates promiscuous OGT:UDP-ClcNAc glycosylation and proteolysis activities. Journal of Biological Chemistry, 2018, 293, 17754-17768.	3.4	7
150	Genetic and structural validation of phosphomannomutase as a cell wall target in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2021, 116, 245-259.	2.5	7
151	Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genetics, 2022, 18, e1010159.	3.5	7
152	Crystallization and X-ray diffraction studies of the fatty-acid responsive transcription factor FadR fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 469-471.	2.5	6
153	Crystallization and X-ray diffraction analysis of peroxisomal Δ3-Δ2-enoyl-CoA isomerase fromSaccharomyces cerevisiae. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1020-1023.	2.5	5
154	Purification, crystallization and preliminary X-ray diffraction of a proteolytic fragment of PDK1 containing the pleckstrin homology domain. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 314-316.	2.5	4
155	O-GlcNAc transfer: size matters. Nature Chemical Biology, 2011, 7, 134-135.	8.0	4
156	Native detection of protein <i>O</i> -GlcNAcylation by gel electrophoresis. Analyst, The, 2020, 145, 6826-6830.	3.5	4
157	Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. Journal of Biological Chemistry, 2022, 298, 102276.	3.4	4
158	Purification, crystallization and preliminary X-ray diffraction data of UDP-galactopyranose mutase from <i>Aspergillus fumigatus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 705-708.	0.7	3
159	A missense mutation in a patient with developmental delay affects the activity and structure of the hexosamine biosynthetic pathway enzyme AGX1. FEBS Letters, 2021, 595, 110-122.	2.8	3
160	A mouse model for functional dissection of TAB1 O-GlcNAcylation. Wellcome Open Research, 2019, 4, 128.	1.8	3
161	Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. Journal of Biological Chemistry, 2022, 298, 102003.	3.4	3
162	Synthesis and Structure-based Dissection of Cyclic Peptide Chitinase Inhibitors: New Leads for Antifungal and Anti-Inflammatory Drugs. Advances in Experimental Medicine and Biology, 2009, 611, 525-526.	1.6	2

#	Article	IF	CITATIONS
163	A mouse model for functional dissection of TAB1 O-GlcNAcylation. Wellcome Open Research, 2019, 4, 128.	1.8	2
164	Natural Product Family 18 Chitinase Inhibitors. ChemInform, 2006, 37, no.	0.0	1
165	Putting glycobiology on a structural footing. Current Opinion in Structural Biology, 2008, 18, 525-526.	5.7	Ο
166	Comparative structural analysis of retroviral fusion proteins identifies regions that modulate membrane fusion: a potential retroviral achilles heal?. Retrovirology, 2011, 8, .	2.0	0
167	SPPS of the Natural Product Chitinase Inhibitor Argifin: Library Generation and Biological Evaluation. Advances in Experimental Medicine and Biology, 2009, 611, 143-144.	1.6	0