Bastiaan P Krom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymicrobial Aggregates in Human Saliva Build the Oral Biofilm. MBio, 2022, 13, e0013122.	4.1	23
2	Niacin Limitation Promotes Candida glabrata Adhesion to Abiotic Surfaces. Pathogens, 2022, 11, 387.	2.8	1
3	The Role of the Oral Immune System in Oropharyngeal Candidiasis-Facilitated Invasion and Dissemination of Staphylococcus aureus. Frontiers in Oral Health, 2022, 3, 851786.	3.0	4
4	The novel endolysin XZ.700 effectively treats MRSA biofilms in two biofilm models without showing toxicity on human bone cells <i>in vitro</i> . Biofouling, 2021, 37, 184-193.	2.2	15
5	Immunoediting role for major vault protein in apoptotic signaling induced by bacterial <i>N</i> -acyl homoserine lactones. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
6	The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules, 2021, 11, 1165.	4.0	49
7	Sex Steroid Hormones as a Balancing Factor in Oral Host Microbiome Interactions. Frontiers in Cellular and Infection Microbiology, 2021, 11, 714229.	3.9	14
8	Of fungi and men: role of fungi in pancreatic cancer carcinogenesis. Annals of Translational Medicine, 2020, 8, 1257-1257.	1.7	3
9	Short-Chain <i>N</i> -Acylhomoserine Lactone Quorum-Sensing Molecules Promote Periodontal Pathogens in <i>In Vitro</i> Oral Biofilms. Applied and Environmental Microbiology, 2020, 86, .	3.1	26
10	Adhesion of Staphylococcus aureus to Candida albicans During Co-Infection Promotes Bacterial Dissemination Through the Host Immune Response. Frontiers in Cellular and Infection Microbiology, 2020, 10, 624839.	3.9	25
11	DNase-mediated eDNA removal enhances D-LL-31 activity against biofilms of bacteria isolated from chronic rhinosinusitis patients. Biofouling, 2020, 36, 1117-1128.	2.2	6
12	The Host Immune System Facilitates Disseminated Staphylococcus aureus Disease Due to Phagocytic Attraction to Candida albicans during Coinfection: a Case of Bait and Switch. Infection and Immunity, 2019, 87, .	2.2	22
13	Commensal and Pathogenic Biofilms Alter Toll-Like Receptor Signaling in Reconstructed Human Gingiva. Frontiers in Cellular and Infection Microbiology, 2019, 9, 282.	3.9	31
14	Review: modulation of the oral microbiome by the host to promote ecological balance. Odontology / the Society of the Nippon Dental University, 2019, 107, 437-448.	1.9	59
15	Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components. Applied Surface Science, 2019, 488, 194-204.	6.1	38
16	<i>Candida albicans</i> enhances initial biofilm growth of <i>Cutibacterium acnes</i> under aerobic conditions. Biofouling, 2019, 35, 350-360.	2.2	13
17	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	8.6	468
18	Saliva-Derived Commensal and Pathogenic Biofilms in a Human Gingiva Model. Journal of Dental Research, 2018, 97, 201-208.	5.2	36

#	Article	IF	CITATIONS
19	Phytosphingosine Prevents the Formation of Young Salivary Biofilms in vitro. Caries Research, 2018, 52, 7-13.	2.0	9
20	Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Scientific Reports, 2018, 8, 16061.	3.3	61
21	Impact of nutritional stress on drug susceptibility and biofilm structures of Burkholderia pseudomallei and Burkholderia thailandensis grown in static and microfluidic systems. PLoS ONE, 2018, 13, e0194946.	2.5	19
22	Diffusion of antimicrobials in multispecies biofilms evaluated in a new biofilm model. International Endodontic Journal, 2017, 50, 367-376.	5.0	16
23	On the ecosystemic network of saliva in healthy young adults. ISME Journal, 2017, 11, 1218-1231.	9.8	132
24	<i>Candida albicans</i> alters the bacterial microbiome of early <i>in vitro</i> oral biofilms. Journal of Oral Microbiology, 2017, 9, 1270613.	2.7	57
25	Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria. Fungal Genetics and Biology, 2017, 109, 1-6.	2.1	32
26	lca-status of clinical Staphylococcus epidermidis strains affects adhesion and aggregation: a thermodynamic analysis. Antonie Van Leeuwenhoek, 2017, 110, 1467-1474.	1.7	8
27	Effect of erythritol on microbial ecology of <i>in vitro</i> gingivitis biofilms. Journal of Oral Microbiology, 2017, 9, 1337477.	2.7	14
28	The mycobiome of root canal infections is correlated to the bacteriome. Clinical Oral Investigations, 2017, 21, 1871-1881.	3.0	55
29	Metabolic Interactions between Bacteria and Fungi in Commensal Oral Biofilms. Journal of Fungi (Basel, Switzerland), 2017, 3, 40.	3.5	33
30	Red and Green Fluorescence from Oral Biofilms. PLoS ONE, 2016, 11, e0168428.	2.5	18
31	Fine‶uning Covalent Inhibition of Bacterial Quorum Sensing. ChemBioChem, 2016, 17, 825-835.	2.6	26
32	Farnesol and <i>Candida albicans</i> : Quorum Sensing or Not Quorum Sensing?. Israel Journal of Chemistry, 2016, 56, 295-301.	2.3	9
33	A novel compound to maintain a healthy oral plaque ecology <i>in vitro</i> . Journal of Oral Microbiology, 2016, 8, 32513.	2.7	19
34	Candida albicansin oral biofilms could prevent caries. Pathogens and Disease, 2016, 74, ftw039.	2.0	52
35	Interspecies Interactions between Clostridium difficile and Candida albicans. MSphere, 2016, 1, .	2.9	74
36	Candida albicans in Multispecies Oral Communities; A Keystone Commensal?. Advances in Experimental Medicine and Biology, 2016, 931, 13-20.	1.6	42

#	Article	IF	CITATIONS
37	In Vitro Models for Candida Biofilm Development. Methods in Molecular Biology, 2016, 1356, 95-105.	0.9	17
38	Staphylococcus–Candida Interaction Models: Antibiotic Resistance Testing and Host Interactions. Methods in Molecular Biology, 2016, 1356, 153-161.	0.9	11
39	LuxS signaling in Porphyromonas gingivalis-host interactions. Anaerobe, 2015, 35, 3-9.	2.1	35
40	<i>In vitro</i> phenotypic differentiation towards commensal and pathogenic oral biofilms. Biofouling, 2015, 31, 503-510.	2.2	37
41	Uses and limitations of green fluorescent protein as a viability marker in Enterococcus faecalis: An observational investigation. Journal of Microbiological Methods, 2015, 115, 57-63.	1.6	14
42	Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology (United Kingdom), 2015, 161, 168-181.	1.8	209
43	Al-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Frontiers in Cellular and Infection Microbiology, 2014, 4, 94.	3.9	90
44	Acquiring and maintaining a normal oral microbiome: current perspective. Frontiers in Cellular and Infection Microbiology, 2014, 4, 85.	3.9	191
45	<i>Candida</i> and Other Fungal Species. Journal of Dental Research, 2014, 93, 445-451.	5.2	111
46	Microbial biofilms and wound healing: an ecological hypothesis. Phlebology, 2014, 29, 168-173.	1.2	10
47	Historical and contemporary hypotheses on the development of oral diseases: are we there yet?. Frontiers in Cellular and Infection Microbiology, 2014, 4, 92.	3.9	133
48	Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae—An AFM study. Colloids and Surfaces B: Biointerfaces, 2013, 110, 45-50.	5.0	14
49	A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm. Advanced Functional Materials, 2013, 23, 2843-2849.	14.9	165
50	Surface Thermodynamic and Adhesion Force Evaluation of the Role of Chitin-Binding Protein in the Physical Interaction between <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i> . Langmuir, 2013, 29, 4823-4829.	3.5	25
51	Streptococcus mutans, Candida albicans, and the Human Mouth: A Sticky Situation. PLoS Pathogens, 2013, 9, e1003616.	4.7	236
52	Current State of Craniofacial Prosthetic Rehabilitation. International Journal of Prosthodontics, 2013, 26, 57-67.	1.7	90
53	Microbial biofilms on facial prostheses. Biofouling, 2012, 28, 583-591.	2.2	39
54	Link between Culture Zeta Potential Homogeneity and Ebp in Enterococcus faecalis. Applied and Environmental Microbiology, 2012, 78, 2282-2288.	3.1	13

#	Article	IF	CITATIONS
55	Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans. Soft Matter, 2012, 8, 6454.	2.7	44
56	Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicanshyphae. BMC Microbiology, 2012, 12, 281.	3.3	46
57	Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology (United Kingdom), 2012, 158, 2975-2986.	1.8	188
58	Diazirine based photoaffinity labeling. Bioorganic and Medicinal Chemistry, 2012, 20, 554-570.	3.0	322
59	Role of eDNA on the Adhesion Forces between <i>Streptococcus mutans</i> and Substratum Surfaces: Influence of Ionic Strength and Substratum Hydrophobicity. Langmuir, 2011, 27, 10113-10118.	3.5	80
60	DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter, 2011, 7, 2927.	2.7	77
61	Macromolecular Inhibition of Quorum Sensing: Enzymes, Antibodies, and Beyond. Chemical Reviews, 2011, 111, 195-208.	47.7	162
62	Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Glutathione. PLoS ONE, 2011, 6, e28830.	2.5	63
63	<i>Ica</i> â€expression and gentamicin susceptibility of <i>Staphylococcus epidermidis</i> biofilm on orthopedic implant biomaterials. Journal of Biomedical Materials Research - Part A, 2011, 96A, 365-371.	4.0	29
64	Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber. Colloids and Surfaces B: Biointerfaces, 2011, 87, 427-432.	5.0	28
65	Rapid Screening Method for Compounds That Affect the Growth and Germination of Candida albicans, Using a Real-Time PCR Thermocycler. Applied and Environmental Microbiology, 2011, 77, 8193-8196.	3.1	6
66	Survival of Adhering Staphylococci during Exposure to a Quaternary Ammonium Compound Evaluated by Using Atomic Force Microscopy Imaging. Antimicrobial Agents and Chemotherapy, 2011, 55, 5010-5017.	3.2	45
67	Cholate-Stimulated Biofilm Formation by Lactococcus lactis Cells. Applied and Environmental Microbiology, 2011, 77, 2602-2610.	3.1	10
68	Microbial Spy Games and Host Response: Roles of a Pseudomonas aeruginosa Small Molecule in Communication with Other Species. PLoS Pathogens, 2011, 7, e1002312.	4.7	24
69	Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation. Applied and Environmental Microbiology, 2010, 76, 3405-3408.	3.1	265
70	Farnesol-Induced Apoptosis in <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 2392-2401.	3.2	210
71	<i>Streptococcus mutans</i> Competence-Stimulating Peptide Inhibits <i>Candida albicans</i> Hypha Formation. Eukaryotic Cell, 2009, 8, 1658-1664.	3.4	174
72	Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology (United Kingdom), 2009, 155, 1997-2003.	1.8	63

#	Article	IF	CITATIONS
73	Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomaterialia, 2009, 5, 1905-1910.	8.3	52
74	Synthesis and validation of a probe to identify quorum sensing receptors. Chemical Communications, 2009, , 7378.	4.1	37
75	Effect of Cinnamon Oil on icaA Expression and Biofilm Formation by Staphylococcus epidermidis. Applied and Environmental Microbiology, 2009, 75, 6850-6855.	3.1	126
76	Candida Biofilm Analysis in the Artificial Throat Using FISH. Methods in Molecular Biology, 2009, 499, 45-54.	0.9	5
77	Conditions for Optimal Candida Biofilm Development in Microtiter Plates. Methods in Molecular Biology, 2009, 499, 55-62.	0.9	19
78	recA mediated spontaneous deletions of the icaADBC operon of clinical Staphylococcus epidermidis isolates: a new mechanism of phenotypic variations. Antonie Van Leeuwenhoek, 2008, 94, 317-328.	1.7	17
79	Increased adhesion of Enterococcus faecalis strains with bimodal electrophoretic mobility distributions. Colloids and Surfaces B: Biointerfaces, 2008, 64, 302-306.	5.0	9
80	Carnitine-Dependent Transport of Acetyl Coenzyme A in <i>Candida albicans</i> Is Essential for Growth on Nonfermentable Carbon Sources and Contributes to Biofilm Formation. Eukaryotic Cell, 2008, 7, 610-618.	3.4	40
81	Low-Load Compression Testing: a Novel Way of Measuring Biofilm Thickness. Applied and Environmental Microbiology, 2007, 73, 7023-7028.	3.1	34
82	Optimized candidal biofilm microtiter assay. Journal of Microbiological Methods, 2007, 68, 421-423.	1.6	69
83	Surface charge influences enterococcal prevalence in mixed-species biofilms. Journal of Applied Microbiology, 2007, 102, 1254-1260.	3.1	19
84	Influence of Culture Heterogeneity in Cell Surface Charge on Adhesion and Biofilm Formation by Enterococcus faecalis. Journal of Bacteriology, 2006, 188, 2421-2426.	2.2	90
85	Enterococcus faecalis strains show culture heterogeneity in cell surface charge. Microbiology (United Kingdom), 2006, 152, 807-814.	1.8	32
86	The Two-Component Signal Transduction Protein Chk1p Regulates Quorum Sensing in Candida albicans. Eukaryotic Cell, 2004, 3, 1062-1065.	3.4	134
87	Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans. Microbiology (United Kingdom), 2004, 150, 229-240.	1.8	36
88	Transporters involved in uptake of di- and tricarboxylates in Bacillus subtilis. Antonie Van Leeuwenhoek, 2003, 84, 69-80.	1.7	12
89	Conserved Residues R420 and Q428 in a Cytoplasmic Loop of the Citrate/Malate Transporter CimH of <i>Bacillus subtilis</i> Are Accessible from the External Face of the Membrane. Biochemistry, 2003, 42, 467-474.	2.5	21
90	Impact of the Mg 2+ -citrate transporter CitM on heavy metal toxicity in Bacillus subtilis. Archives of Microbiology, 2002, 178, 370-375.	2.2	26

#	Article	IF	CITATIONS
91	<i>Bacillus subtilis</i> YxkJ Is a Secondary Transporter of the 2-Hydroxycarboxylate Transporter Family That Transports <scp>I</scp> -Malate and Citrate. Journal of Bacteriology, 2001, 183, 5862-5869.	2.2	17
92	Complementary Metal Ion Specificity of the Metal-Citrate Transporters CitM and CitH of Bacillus subtilis. Journal of Bacteriology, 2000, 182, 6374-6381.	2.2	70
93	Catabolite Repression and Induction of the Mg2+-Citrate Transporter CitM of Bacillus subtilis. Journal of Bacteriology, 2000, 182, 6099-6105.	2.2	30