Shuangxia Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3111646/publications.pdf

Version: 2024-02-01

71102 88630 5,606 70 41 70 citations h-index g-index papers 71 71 71 5666 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plant Single Cell Transcriptome Hub (PsctH): an integrated online tool to explore the plant singleâ€eell transcriptome landscape. Plant Biotechnology Journal, 2022, 20, 10-12.	8.3	27
2	Identification and Functional Analysis of IncRNA by CRISPR/Cas9 During the Cotton Response to Sap-Sucking Insect Infestation. Frontiers in Plant Science, 2022, 13, 784511.	3.6	12
3	Chromosomeâ€evel genome of <i>Camellia lanceoleosa</i> provides a valuable resource for understanding genome evolution and selfâ€incompatibility. Plant Journal, 2022, 110, 881-898.	5.7	29
4	Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biology, 2022, 20, 45.	3.8	33
5	Genetic manipulation of Soc1 â€ike genes promotes photosynthesis in flowers and leaves and enhances plant tolerance to high temperature. Plant Biotechnology Journal, 2021, 19, 8-10.	8.3	6
6	Highâ€oleic acid content, nontransgenic allotetraploid cotton (<i>Gossypium hirsutum</i> L.) generated by knockout of <i>GhFAD2</i> genes with CRISPR/Cas9 system. Plant Biotechnology Journal, 2021, 19, 424-426.	8.3	50
7	The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (<i>G.Âhirsutum</i>) and creation of nontransgenic, gossypolâ€free cotton. Plant Biotechnology Journal, 2021, 19, 221-223.	8.3	39
8	The chromosomeâ€scale highâ€quality genome assembly of <i>Panax notoginseng</i> provides insight into dencichine biosynthesis. Plant Biotechnology Journal, 2021, 19, 869-871.	8.3	34
9	Efficient CRISPR/Cas9 mediated Pooled-sgRNAs assembly accelerates targeting multiple genes related to male sterility in cotton. Plant Methods, 2021, 17, 16.	4.3	26
10	Green giantâ€"a tiny chloroplast genome with mighty power to produce highâ€value proteins: history and phylogeny. Plant Biotechnology Journal, 2021, 19, 430-447.	8.3	86
11	Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. Plants, 2021, 10, 621.	3.5	26
12	Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana. Journal of Plant Research, 2021, 134, 613-623.	2.4	4
13	Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biology, 2021, 22, 119.	8.8	76
14	Structural insights into homotrimeric assembly of cellulose synthase CesA7 from <i>Gossypium hirsutum</i> . Plant Biotechnology Journal, 2021, 19, 1579-1587.	8.3	36
15	Ectopic Expression of <i>GhSAMDC3</i> Enhanced Salt Tolerance Due to Accumulated Spd Content and Activation of Salt Tolerance-Related Genes in <i>Arabidopsis thaliana</i> DNA and Cell Biology, 2021, 40, 1144-1157.	1.9	4
16	Silencing of aÂ <i>LIM</i> gene in cotton exhibits enhanced resistance against <i>Apolygus lucorum</i> Journal of Cellular Physiology, 2021, 236, 5921-5936.	4.1	8
17	Highâ€efficient and precise base editing of C•G to T•A in the allotetraploid cotton (<i>Gossypium) Tj ETQq1 2020, 18, 45-56.</i>		14 rgBT /Ove 114
18	Transcriptomic profiles of non-embryogenic and embryogenic callus cells in a highly regenerative upland cotton line (Gossypium hirsutum L.). BMC Developmental Biology, 2020, 20, 25.	2.1	19

#	Article	IF	CITATIONS
19	The <i>Acer truncatum</i> genome provides insights into nervonic acid biosynthesis. Plant Journal, 2020, 104, 662-678.	5.7	52
20	The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology, 2020, 21, 200.	8.8	69
21	Ectopic expression of GhSAMDC1 improved plant vegetative growth and early flowering through conversion of spermidine to spermine in tobacco. Scientific Reports, 2020, 10, 14418.	3.3	13
22	The application of a heatâ€inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (<i>G.Ahirsutum</i>) plants. Plant Biotechnology Journal, 2020, 18, 2436-2443.	8.3	58
23	Transcriptome and metabolome analysis reveal that oral secretions from Helicoverpa armigera and Spodoptera litura influence wound-induced host response in cotton. Crop Journal, 2020, 8, 929-942.	5.2	16
24	CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Offâ€Target Evaluation, and Strategies to Mitigate Offâ€Target Effects. Advanced Science, 2020, 7, 1902312.	11.2	162
25	Genome editing with the CRISPR as system: an art, ethics and global regulatory perspective. Plant Biotechnology Journal, 2020, 18, 1651-1669.	8.3	97
26	Multiâ€omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnology Journal, 2019, 17, 435-450.	8.3	88
27	The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature Communications, 2019, 10, 4702.	12.8	115
28	CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science, 2019, 24, 1102-1125.	8.8	292
29	Genome-Wide Analysis of Cotton miRNAs During Whitefly Infestation Offers New Insights into Plant-Herbivore Interaction. International Journal of Molecular Sciences, 2019, 20, 5357.	4.1	12
30	Robust CRISPR/Cpf1 (Cas12a)â€mediated genome editing in allotetraploid cotton (<i>Gossypium) Tj ETQq0 0 0</i>	rgBT ₃ /Ove	rlock 10 Tf 50
31	Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics, 2019, 51, 224-229.	21.4	468
32	Whole genome sequencing reveals rare offâ€ŧarget mutations and considerable inherent genetic or/and somaclonal variations in <scp>CRISPR</scp> /Cas9â€edited cotton plants. Plant Biotechnology Journal, 2019, 17, 858-868.	8.3	159
33	High efficient multisites genome editing in allotetraploid cotton (<i>Gossypium hirsutum</i>) using CRISPR/Cas9 system. Plant Biotechnology Journal, 2018, 16, 137-150.	8.3	202
34	Osmotin: A plant defense tool against biotic and abiotic stresses. Plant Physiology and Biochemistry, 2018, 123, 149-159.	5.8	86
35	Laccase GhLac1 Modulates Broad-Spectrum Biotic Stress Tolerance via Manipulating Phenylpropanoid Pathway and Jasmonic Acid Synthesis. Plant Physiology, 2018, 176, 1808-1823.	4.8	186
36	Red fluorescent protein (DsRed2), an ideal reporter for cotton genetic transformation and molecular breeding. Crop Journal, 2018, 6, 366-376.	5. 2	22

#	Article	IF	CITATIONS
37	Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. Plant Molecular Biology, 2018, 97, 537-551.	3.9	49
38	Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nature Genetics, 2017, 49, 579-587.	21.4	367
39	A transgenic strategy for controlling plant bugs (<i>Adelphocoris suturalis</i>) through expression of doubleâ€stranded RNA homologous to fatty acylâ€coenzyme A reductase in cotton. New Phytologist, 2017, 215, 1173-1185.	7.3	53
40	The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Scientific Reports, 2016, 5, 17662.	3.3	294
41	Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnology Journal, 2016, 14, 1956-1975.	8.3	109
42	GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium) Tj ETQq0 0 C) rgBJ_{Over	lock 10 Tf 50
43	Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference. Scientific Reports, 2016, 6, 33342.	3.3	31
44	Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Science, 2016, 245, 35-49.	3.6	59
45	Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds. Science China Life Sciences, 2016, 59, 172-182.	4.9	18
46	Transgenic Cotton Plants Expressing Double-stranded RNAs Target <i>HMG-CoA Reductase</i> (<i>HMGR</i>) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms. International Journal of Biological Sciences, 2015, 11, 1296-1305.	6.4	59
47	The Sophora Alopecuroid H + -PPase Gene SaVP1 Confers Multiple Abiotic Stress Tolerance in Arabidopsis. Plant Molecular Biology Reporter, 2015, 33, 923-930.	1.8	3
48	Engineered chloroplast dsRNA silences <i>cytochrome p450 monooxygenase</i> , <i> V</i> â€ <i>ATPase</i> and <i>chitin synthase</i> genes in the insect gut and disrupts <i>Helicoverpa armigera</i> larval development and pupation. Plant Biotechnology Journal, 2015, 13, 435-446.	8.3	144
49	The Engineered Chloroplast Genome Just Got Smarter. Trends in Plant Science, 2015, 20, 622-640.	8.8	142
50	Pyramiding Bt genes for increasing resistance of cotton to two major lepidopteran pests: Spodoptera litura and Heliothis armigera. Acta Physiologiae Plantarum, 2014, 36, 2717-2727.	2.1	21
51	Expression of γâ€tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metalâ€induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnology Journal, 2014, 12, 1274-1285.	8.3	68
52	Overexpression of Rice NAC Gene SNAC1 Improves Drought and Salt Tolerance by Enhancing Root Development and Reducing Transpiration Rate in Transgenic Cotton. PLoS ONE, 2014, 9, e86895.	2.5	204
53	Expression of Fungal Cutinase and Swollenin in Tobacco Chloroplasts Reveals Novel Enzyme Functions and/or Substrates. PLoS ONE, 2013, 8, e57187.	2.5	36
54	Release of Proteins from Intact Chloroplasts Induced by Reactive Oxygen Species during Biotic and Abiotic Stress. PLoS ONE, 2013, 8, e67106.	2.5	41

#	Article	IF	CITATIONS
55	Isolation and Characterization of a Conserved Domain in the Eremophyte H+-PPase Family. PLoS ONE, 2013, 8, e70099.	2.5	3
56	Overexpression of Arabidopsis cyclin D2;1 in cotton results in leaf curling and other plant architectural modifications. Plant Cell, Tissue and Organ Culture, 2012, 110, 261-273.	2.3	13
57	<i>Pinellia ternata</i> agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, <i>Lepidopteran</i> insects, bacterial and viral pathogens. Plant Biotechnology Journal, 2012, 10, 313-327.	8.3	68
58	Expression and characterization of antimicrobial peptides Retrocyclinâ€101 and Protegrinâ€1 in chloroplasts to control viral and bacterial infections. Plant Biotechnology Journal, 2011, 9, 100-115.	8.3	112
59	Release of Hormones from Conjugates: Chloroplast Expression of \hat{l}^2 -Glucosidase Results in Elevated Phytohormone Levels Associated with Significant Increase in Biomass and Protection from Aphids or Whiteflies Conferred by Sucrose Esters. Plant Physiology, 2011, 155, 222-235.	4.8	94
60	Chloroplastâ€derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnology Journal, 2010, 8, 332-350.	8.3	122
61	Vitrification–cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Reports, 2008, 27, 241-250.	5.6	61
62	Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Reports, 2008, 27, 1303-1316.	5.6	93
63	Analysis of genes differentially expressed during initial cellular dedifferentiation in cotton. Science Bulletin, 2008, 53, 3666-3676.	1.7	39
64	Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell, Tissue and Organ Culture, 2007, 90, 63-70.	2.3	28
65	Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Science Bulletin, 2007, 52, 3110-3117.	1.7	85
66	An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell, Tissue and Organ Culture, 2006, 85, 181-185.	2.3	43
67	Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium) Tj ETQq $1\ 1$	0.784314 rgBT 2.3	/9yerlock 1
68	Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 371-375.	2.1	61
69	Production and characterization of somatic hybrids between upland cotton (Gossypium hirsutum) and wild cotton (G. klotzschianum Anderss) via electrofusion. Theoretical and Applied Genetics, 2004, 109, 472-479.	3.6	41
70	Somatic embryogenesis and plant regeneration in wild cotton (Gossypium klotzschianum). Plant Cell, Tissue and Organ Culture, 2003, 75, 247-253.	2.3	21