## José M J M Rodriguez-Maroto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3110065/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF               | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 1  | Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine<br>Chemosphere, 2005, 59, 1229-1239.                                                                 | 8.2              | 105           |
| 2  | Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 2009, 74, 804-809.                                                                                                 | 8.2              | 103           |
| 3  | Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers. Journal of Membrane Science, 2006, 274, 123-137.                                       | 8.2              | 89            |
| 4  | On the kinetics of thermal decomposition of wood and wood components. Thermochimica Acta, 1990, 164, 135-144.                                                                                      | 2.7              | 88            |
| 5  | On transport resistances in direct contact membrane distillation. Journal of Membrane Science, 2007, 295, 28-39.                                                                                   | 8.2              | 82            |
| 6  | Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose–response model. Science of the Total Environment, 2008, 396, 89-99.                                                  | 8.0              | 79            |
| 7  | Membrane thickness reduction effects on direct contact membrane distillation performance. Journal of Membrane Science, 2008, 312, 143-156.                                                         | 8.2              | 74            |
| 8  | Removal of organic contaminants from soils by an electrokinetic process: The case of molinate and bentazone. Experimental and modeling. Separation and Purification Technology, 2011, 79, 193-203. | 7.9              | 64            |
| 9  | Chemotaxis of Pathogenic <i>Vibrio</i> Strains towards Mucus Surfaces of Gilt-Head Sea Bream () Tj ETQq1 1 C                                                                                       | .784314 r<br>3.1 | gBT /Overlock |
| 10 | Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Separation and Purification Technology, 2011, 79, 151-156.             | 7.9              | 52            |
| 11 | Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environmental Research, 2019, 179, 108849.                                                                       | 7.5              | 51            |
| 12 | Modeling of electrokinetic processes by finite element integration of the Nernst–Planck–Poisson<br>system of equations. Separation and Purification Technology, 2011, 79, 183-192.                 | 7.9              | 47            |
| 13 | Two-dimensional model for soil electrokinetic remediation of heavy metals. Chemosphere, 2004, 54, 895-903.                                                                                         | 8.2              | 40            |
| 14 | Effects of membrane and module design improvements on flux in direct contact membrane distillation. Desalination, 2007, 205, 97-103.                                                               | 8.2              | 40            |
| 15 | Simulation-based analysis of the differences in the removal rate of chlorides, nitrates and sulfates by electrokinetic desalination treatments. Electrochimica Acta, 2013, 89, 436-444.            | 5.2              | 40            |
| 16 | Cobalt(II) removal from water by chemical reduction with sodium borohydride. Water Research, 1993, 27, 985-992.                                                                                    | 11.3             | 38            |
| 17 | Thermal decomposition of wood in oxidizing atmosphere. A kinetic study from non-isothermal TG experiments. Thermochimica Acta, 1991, 191, 161-178.                                                 | 2.7              | 34            |
| 18 | Bulk and measured temperatures in direct contact membrane distillation. Journal of Membrane Science, 2005, 250, 141-149.                                                                           | 8.2              | 34            |

| #  | Article                                                                                                                                                                                                                                                            | IF         | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 19 | Modeling of electrokinetic desalination of bricks. Electrochimica Acta, 2012, 86, 213-222.                                                                                                                                                                         | 5.2        | 34            |
| 20 | Scaling-up the acid-enhanced electrokinetic remediation of a real contaminated soil. Electrochimica Acta, 2015, 181, 139-145.                                                                                                                                      | 5.2        | 33            |
| 21 | Computing multi-species chemical equilibrium with an algorithm based on the reaction extents.<br>Computers and Chemical Engineering, 2013, 58, 135-143.                                                                                                            | 3.8        | 32            |
| 22 | Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics. Chemosphere, 2015, 131, 78-84.                                                                                                                        | 8.2        | 32            |
| 23 | Acid Enhanced Electrokinetic Remediation of a Contaminated Soil using Constant Current Density:<br>Strong vs. Weak Acid. Separation Science and Technology, 2014, 49, 1461-1468.                                                                                   | 2.5        | 30            |
| 24 | Biomethanization of mixtures of fruits and vegetables solid wastes and sludge from a municipal<br>wastewater treatment plant. Journal of Environmental Science and Health - Part A Toxic/Hazardous<br>Substances and Environmental Engineering, 2007, 42, 481-487. | 1.7        | 29            |
| 25 | Electrokinetic remediation: The use of mercury speciation for feasibility studies applied to a contaminated soil from Almadén. Electrochimica Acta, 2011, 56, 9303-9310.                                                                                           | 5.2        | 29            |
| 26 | Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips.<br>Chemosphere, 2007, 66, 1716-1726.                                                                                                                                | 8.2        | 26            |
| 27 | Recovery of Li and Co from LiCoO2 via Hydrometallurgical–Electrodialytic Treatment. Applied<br>Sciences (Switzerland), 2020, 10, 2367.                                                                                                                             | 2.5        | 26            |
| 28 | Electrokinetic Remediation. II. Amphoteric Metals and Enhancement with a Weak Acid. Separation Science and Technology, 1995, 30, 3111-3128.                                                                                                                        | 2.5        | 25            |
| 29 | Removal of polycyclic aromatic hydrocarbons (PAHs) in conventional drinking water treatment processes. Journal of Contaminant Hydrology, 2021, 243, 103888.                                                                                                        | 3.3        | 25            |
| 30 | Electrokinetic remediation of a soil contaminated by the pyritic sludge spill of Aznalcollar (SW,) Tj ETQq0 0 0 rgB                                                                                                                                                | T /Oyerloc | k 19 Tf 50 30 |
| 31 | The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil. Electrochimica Acta, 2015, 181, 82-89.                                                                                                                  | 5.2        | 23            |
| 32 | Modeling of Electric Double-Layers Including Chemical Reaction Effects. Electrochimica Acta, 2014, 150, 263-268.                                                                                                                                                   | 5.2        | 22            |
| 33 | Electrokinetic Remediation. I. Modeling of Simple Systems. Separation Science and Technology, 1995, 30, 2937-2961.                                                                                                                                                 | 2.5        | 20            |
| 34 | Ammonia enhanced two-dimensional electrokinetic remediation of copper spiked kaolin.<br>Electrochimica Acta, 2007, 52, 3366-3371.                                                                                                                                  | 5.2        | 20            |
| 35 | Biodegradation Phenomena during Soil Vapor Extraction: A High-Speed Nonequilibrium Model.<br>Separation Science and Technology, 1994, 29, 429-463.                                                                                                                 | 2.5        | 18            |
| 36 | Electrodialytic phosphorus recovery from sewage sludge ash under kinetic control. Electrochimica<br>Acta, 2018, 287, 49-59.                                                                                                                                        | 5.2        | 18            |

| #  | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Air bubbling results in carbon loss during microalgal cultivation in bicarbonate-enriched media:<br>experimental data and process modeling. Aquacultural Engineering, 2005, 32, 493-508.                                                                                                   | 3.1 | 17        |
| 38 | Biogas production from pear residues using sludge from a wastewater treatment plant digester.<br>Influence of the feed delivery procedure. Bioresource Technology, 2013, 127, 242-247.                                                                                                     | 9.6 | 17        |
| 39 | Anaerobic co-digestion of municipal sewage sludge and fruit/vegetable waste: effect of different<br>mixtures on digester stability and methane yield. Journal of Environmental Science and Health - Part A<br>Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 628-634. | 1.7 | 17        |
| 40 | Soil Clean Up by <i>in-situ</i> Aeration. VII. High-Speed Modeling of Diffusion Kinetics. Separation Science and Technology, 1991, 26, 743-760.                                                                                                                                            | 2.5 | 15        |
| 41 | Groundwater Cleanup by In-Situ Sparging. VIII. Effect of Air Channeling on Dissolved Volatile Organic<br>Compounds Removal Efficiency. Separation Science and Technology, 1994, 29, 2387-2418.                                                                                             | 2.5 | 15        |
| 42 | Soil Cleanup by In-Situ Aeration. XVIII. Field-Scale Models with Diffusion from Clay Structures.<br>Separation Science and Technology, 1994, 29, 1367-1399.                                                                                                                                | 2.5 | 15        |
| 43 | Aging effects on the mobility of Pb in soil: Influence on the energy requirements in electroremediation. Chemosphere, 2018, 213, 351-357.                                                                                                                                                  | 8.2 | 15        |
| 44 | Soil Clean Up by in-situ Aeration. VI. Effects of Variable Permeabilities. Separation Science and Technology, 1991, 26, 133-163.                                                                                                                                                           | 2.5 | 14        |
| 45 | Copper Removal from Water by Chemical Reduction with Sodium Borohydride. Separation Science and Technology, 1992, 27, 1449-1468.                                                                                                                                                           | 2.5 | 14        |
| 46 | Soil Cleanup by in-situ Aeration. XVI. Solution and Diffusion in Mass-Transport-Limited Operation and Calculation of Darcy's Constants. Separation Science and Technology, 1994, 29, 1133-1163.                                                                                            | 2.5 | 14        |
| 47 | Competitive retention of lead and cadmium on an agricultural soil. Environmental Monitoring and Assessment, 2003, 89, 165-177.                                                                                                                                                             | 2.7 | 14        |
| 48 | Numerical prediction of diffusion and electric field-induced iron nanoparticle transport.<br>Electrochimica Acta, 2015, 181, 5-12.                                                                                                                                                         | 5.2 | 14        |
| 49 | Acid leaching of LiCoO2 enhanced by reducing agent. Model formulation and validation. Chemosphere, 2022, 287, 132020.                                                                                                                                                                      | 8.2 | 14        |
| 50 | Soil Cleanup by In-Situ Aeration. XIX. Effects of Spill Age on Soil Vapor Extraction Remediation Rates.<br>Separation Science and Technology, 1994, 29, 1645-1671.                                                                                                                         | 2.5 | 12        |
| 51 | Production of biogas from co-digestion of livestock and agricultural residues: A case study. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 856-861.                                                             | 1.7 | 12        |
| 52 | Decontamination of Soils by Membrane Processes:  Characterization of Membranes under Working<br>Conditions. Industrial & Engineering Chemistry Research, 2005, 44, 400-407.                                                                                                                | 3.7 | 11        |
| 53 | Electrodialytic processes in solid matrices. New insights into battery recycling. A review. Journal of Chemical Technology and Biotechnology, 2019, 94, 1727-1738.                                                                                                                         | 3.2 | 11        |
| 54 | Hydrometallurgical Extraction of Li and Co from LiCoO2 Particles–Experimental and Modeling.<br>Applied Sciences (Switzerland), 2020, 10, 6375.                                                                                                                                             | 2.5 | 11        |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Heavy Metal Removal by Chemical Reduction with Sodium Borohydride. A Pilot-Plant Study. Separation<br>Science and Technology, 1992, 27, 1569-1582.                                            | 2.5  | 10        |
| 56 | Experimental and modeling of the electrodialytic and dialytic treatment of a fly ash containing Cd, Cu<br>and Pb. Journal of Applied Electrochemistry, 2010, 40, 1689-1697.                   | 2.9  | 10        |
| 57 | Methane production in anaerobic sludges supplemented with two support materials and different levels of acetate and sulphate. Water Research, 1997, 31, 1236-1242.                            | 11.3 | 9         |
| 58 | Column study of the influence of air humidity on the retention of hydrocarbons on soil.<br>Chemosphere, 2000, 41, 1167-1172.                                                                  | 8.2  | 9         |
| 59 | Specific Energy Requirements in Electrokinetic Remediation. Transport in Porous Media, 2018, 121, 585-595.                                                                                    | 2.6  | 9         |
| 60 | Immobilization of Brown Seaweeds Sargassum vulgare for Fe3+ Removal in Batch and Fixed-Bed<br>Column. Water, Air, and Soil Pollution, 2019, 230, 1.                                           | 2.4  | 9         |
| 61 | Groundwater Cleanup by In-Situ Sparging. VII. Volatile Organic Compounds Concentration Rebound<br>Caused by Diffusion after Shutdown. Separation Science and Technology, 1994, 29, 1509-1528. | 2.5  | 8         |
| 62 | Influence of subsidiary energy on growth ofDunaliella viridis Teodoresco: the role of extra energy in<br>algal growth. Journal of Applied Phycology, 1994, 6, 323-330.                        | 2.8  | 8         |
| 63 | Soil Cleanup by In-Situ Aeration. XXI. Effects of Desorption Rates and Equilibria on Remediation Rates.<br>Separation Science and Technology, 1995, 30, 521-547.                              | 2.5  | 8         |
| 64 | Plant treatment, pollutant load, and soil type effects in rhizosphere ecology of trace element polluted soils. Ecotoxicology and Environmental Safety, 2010, 73, 970-981.                     | 6.0  | 8         |
| 65 | Groundwater Cleanup by In-Situ Sparging. VI. A Solution/Distributed Diffusion Model for Nonaqueous<br>Phase Liquid Removal. Separation Science and Technology, 1994, 29, 1401-1432.           | 2.5  | 6         |
| 66 | Evaluation of the use of sepiolite to optimize the methanogenesis from anaerobic domestic sludges in laboratory conditions. Water Research, 1994, 28, 195-200.                                | 11.3 | 6         |
| 67 | Effect of turbulence and inorganic carbon supply on growth ofDunaliella viridis Teodoresco.<br>International Journal of Salt Lake Research, 1995, 4, 223-232.                                 | 0.1  | 6         |
| 68 | Use of glycosides extracted from the fique (Furcraea sp.) in wastewater treatment for textile industry. International Journal of Environmental Science and Technology, 2016, 13, 1131-1136.   | 3.5  | 6         |
| 69 | Chemical Reduction of Nitrate by Zero-Valent Iron: Shrinking-Core versus Surface Kinetics Models.<br>International Journal of Environmental Research and Public Health, 2020, 17, 1241.       | 2.6  | 6         |
| 70 | Batch and Fixed-Bed Biosorption of Pb (II) Using Free and Alginate-Immobilized Spirulina. Processes, 2021, 9, 466.                                                                            | 2.8  | 6         |
| 71 | Influence of water evaporation on soil vapor extraction (SVE). Water Science and Technology, 1994, 30, 115-118.                                                                               | 2.5  | 6         |
| 72 | Soil Clean Up by <i>in-situ</i> Aeration. XV. Effects of Variable Air Flow Rates in Diffusion-Limited Operation. Separation Science and Technology, 1994, 29, 943-969.                        | 2.5  | 5         |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Soil Cleanup by In-Situ Aeration. XXII. Impact of Natural Soil Organic Matter on Cleanup Rates.<br>Separation Science and Technology, 1995, 30, 659-682.                                     | 2.5 | 5         |
| 74 | Mobility and fate of carbetamide in an agricultural soil. Journal of Environmental Science and Health<br>- Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 764-771. | 1.5 | 5         |
| 75 | Biodegradation Phenomena during Soil Vapor Extraction. III. Sensitivity Studies for Two Substrates.<br>Separation Science and Technology, 1994, 29, 1275-1291.                               | 2.5 | 4         |
| 76 | Soil Cleanup by In-Situ Aeration. XXIII. Effect of Air Channeling. Separation Science and Technology, 1995, 30, 2491-2508.                                                                   | 2.5 | 4         |
| 77 | Soil Flushing with EDTA Solutions: A Model for Channeled Flow. Separation Science and Technology, 1998, 33, 867-886.                                                                         | 2.5 | 4         |
| 78 | Soil Clean Up by <i>in-situ</i> Aeration. VIII. Effects of System Geometry on Vapor Extraction Efficiency.<br>Separation Science and Technology, 1991, 26, 1051-1064.                        | 2.5 | 3         |
| 79 | Biodegradation Phenomena during Soil Vapor Extraction: Sensitivity Studies for Single Substrate<br>Systems. Separation Science and Technology, 1994, 29, 557-578.                            | 2.5 | 3         |
| 80 | Removal of Semivolatiles from Soils by Steam Stripping. II. Effects of Diffusion Kinetics. Separation<br>Science and Technology, 1995, 30, 159-187.                                          | 2.5 | 3         |
| 81 | Removal of Semivolatiles from Soils by Steam Stripping. III. Steam Dynamics and the Stripping of Contaminants in a Column. Separation Science and Technology, 1995, 30, 317-336.             | 2.5 | 3         |
| 82 | Electroremediation of sodium bentonite contaminated with phenanthrene and its modeling with a<br>Nernst-Planck equation. Journal of Applied Electrochemistry, 2018, 48, 1373-1380.           | 2.9 | 3         |
| 83 | Experimental setup for the study of soil vapor extraction: a practical approach to determine sorption effect. Water Science and Technology, 1998, 37, 169-176.                               | 2.5 | 3         |
| 84 | Cleanup of fractured rock aquifers. II. Effects of matrix diffusion and nonaqueous phase liquid.<br>Environmental Monitoring and Assessment, 1996, 43, 153-179.                              | 2.7 | 2         |
| 85 | Experimental setup for the study of soil vapor extraction: a practical approach to determine sorption effect. Water Science and Technology, 1998, 37, 169.                                   | 2.5 | 2         |
| 86 | Electrokinetic Modeling of Heavy Metals. , 0, , 537-562.                                                                                                                                     |     | 2         |
| 87 | Electrokinetics and Zero Valent Iron Nanoparticles: Experimental and Modeling of the Transport in Different Porous Media. , 2016, , 279-294.                                                 |     | 2         |
| 88 | Removal of Semivolatiles from Soils by Steam Stripping. IV. Effects of Adsorption/Desorption Kinetics.<br>Separation Science and Technology, 1995, 30, 2659-2678.                            | 2.5 | 1         |
| 89 | Electrokinetic Remediation Procedure Applied to Polluted Soils in Southern Spain. Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23, 04019017.                                    | 2.0 | 1         |
| 90 | Effect of pretreatment and coâ€substrate addition on biogas production from pig slurry. Water and Environment Journal, 2021, 35, 1147-1157.                                                  | 2.2 | 1         |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Feasibility Study of the Electrokinetic Remediation of a Mercury-Polluted Soil. , 2016, , 295-310.                                                                                                                                                     |     | 1         |
| 92 | Modelling of Electrokinetic Processes in Civil and Environmental Engineering Applications. , 0, , .                                                                                                                                                    |     | 1         |
| 93 | TEACHING CHEMICAL ENGINEERING USING COMSOL MULTIPHYSICS. , 2019, , .                                                                                                                                                                                   |     | 1         |
| 94 | Soil Cleanup by In-Situ Aeration. XX. Mass Transport of Volatile Organics in Wet Activated Carbon.<br>Separation Science and Technology, 1994, 29, 2073-2095.                                                                                          | 2.5 | 0         |
| 95 | A COLUMN STUDY OF SOIL CONTAMINATION BY LEAD: INFLUENCE OF pH AND CARBONATE CONTENT. I. EXPERIMENTAL RESULTS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2001, 36, 437-446.        | 1.7 | 0         |
| 96 | A COLUMN STUDY OF SOIL CONTAMINATION BY LEAD: INFLUENCE OF pH AND CARBONATE CONTENT. II.<br>MATHEMATICAL MODEL. Journal of Environmental Science and Health - Part A Toxic/Hazardous<br>Substances and Environmental Engineering, 2001, 36, 1015-1026. | 1.7 | 0         |
| 97 | Electrochemically Assisted Dewatering. Environmental Pollution, 2021, , 401-433.                                                                                                                                                                       | 0.4 | 0         |
| 98 | SEQUENTIAL EXTRACTION PROCEDURE: A VERSATILE TOOL FOR ENVIRONMENTAL RESEARCH. Detritus, 2020, , 23-28.                                                                                                                                                 | 0.9 | 0         |