
Joshua G Pemberton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109839/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma. American Journal of Pathology, 2010, 176, 2520-2529.	3.8	225
2	Calcium and other signalling pathways in neuroendocrine regulation of somatotroph functions. Cell Calcium, 2012, 51, 240-252.	2.4	59
3	Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annual Review of Cell and Developmental Biology, 2019, 35, 85-109.	9.4	57
4	Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. Journal of Cell Biology, 2020, 219, .	5.2	57
5	Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary – Contributions from teleost model systems. Molecular and Cellular Endocrinology, 2018, 463, 142-167.	3.2	54
6	Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. Science Advances, 2020, 6, eaay9572.	10.3	42
7	Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Advances in Experimental Medicine and Biology, 2019, 1111, 77-137.	1.6	32
8	Induction of Phagocytosis and Intracellular Signaling by an Inhibitory Channel Catfish Leukocyte Immune-Type Receptor: Evidence for Immunoregulatory Receptor Functional Plasticity in Teleosts. Journal of Innate Immunity, 2014, 6, 435-455.	3.8	28
9	Integrated regulation of the phosphatidylinositol cycle and phosphoinositideâ€driven lipid transport at ERâ€PM contact sites. Traffic, 2020, 21, 200-219.	2.7	25
10	Characterization of the c10orf76â€PI4KB complex and its necessity for Golgi PI4P levels and enterovirus replication. EMBO Reports, 2020, 21, e48441.	4.5	21
11	Teleost leukocyte immune-type receptors activate distinct phagocytic modes for target acquisition and engulfment. Journal of Leukocyte Biology, 2015, 98, 235-248.	3.3	20
12	Phosphoinositides and calcium signaling; a marriage arranged at ER-PM contact sites. Current Opinion in Physiology, 2020, 17, 149-157.	1.8	18
13	Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors. Biology, 2016, 5, 13.	2.8	17
14	Metabolic routing maintains the unique fatty acid composition of phosphoinositides. EMBO Reports, 2022, 23, .	4.5	13
15	Differential Involvement of Phosphoinositide 3-Kinase in Gonadotrophin-Releasing Hormone Actions in Gonadotrophs and Somatotrophs of Goldfish, Carassius auratus. Journal of Neuroendocrinology, 2011, 23, 660-674.	2.6	12
16	PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: Relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability. General and Comparative Endocrinology, 2014, 205, 268-278.	1.8	10
17	Ligand-Selective Signal Transduction by Two Endogenous GnRH Isoforms Involves Biased Activation of the Class I PI3K Catalytic Subunits p110β, p110γ, and p110δ in Pituitary Gonadotropes and Somatotropes. Endocrinology, 2015, 156, 218-230.	2.8	10
18	Nitric Oxide and Guanylate Cyclase Signalling are Differentially Involved in Gonadotrophin (LH) Release Responses to Two Endogenous GnRHs from Goldfish Pituitary Cells. Journal of Neuroendocrinology, 2012, 24, 1166-1181.	2.6	9

#	Article	IF	CITATIONS
19	MEK1/2 differentially participates in GnRH actions on goldfish LH and GH secretion and hormone protein availability: Acute and long-term effects, in vitro. General and Comparative Endocrinology, 2013, 192, 149-158.	1.8	8
20	Trypsin differentially modulates the surface expression and function of channel catfish leukocyte immune-type receptors. Developmental and Comparative Immunology, 2016, 65, 231-244.	2.3	8
21	Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Frontiers in Immunology, 2018, 9, 1144.	4.8	7
22	Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells. General and Comparative Endocrinology, 2014, 206, 118-129.	1.8	4
23	Selective recruitment of Nck and Syk contribute to distinct leukocyte immune-type receptor-initiated target interactions. Cellular Signalling, 2020, 66, 109443.	3.6	4
24	Nesfatinâ€1 is an inhibitor of the growth hormoneâ€insulinâ€like growth factor axis in goldfish (<i>Carassius auratus</i>). Journal of Neuroendocrinology, 2021, 33, e13010.	2.6	4
25	Ligand-biased regulation of PtdIns(3,4,5)P3-dependent signal transduction in GPCR control of pituitary hormone release Endocrinology 2016, 158 en 2016-1552	2.8	3