Andrew Preston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3108431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nature Genetics, 2003, 35, 32-40.	21.4	898
2	Nonâ€ŧypeable <i>Haemophilus influenzae</i> adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Molecular Microbiology, 2000, 37, 13-27.	2.5	292
3	The Lipooligosaccharides of Pathogenic Gram-Negative Bacteria. Critical Reviews in Microbiology, 1996, 22, 139-180.	6.1	274
4	Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination. MBio, 2014, 5, e01074.	4.1	257
5	Reverse Transcriptase-Mediated Tropism Switching in <i>Bordetella</i> Bacteriophage. Science, 2002, 295, 2091-2094.	12.6	247
6	Multiple Roles for Bordetella Lipopolysaccharide Molecules during Respiratory Tract Infection. Infection and Immunity, 2000, 68, 6720-6728.	2.2	113
7	The Bordetellae: lessons from genomics. Nature Reviews Microbiology, 2004, 2, 379-390.	28.6	96
8	Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Molecular Microbiology, 2003, 48, 725-736.	2.5	95
9	Genomic and Genetic Analysis of Bordetella Bacteriophages Encoding Reverse Transcriptase-Mediated Tropism-Switching Cassettes. Journal of Bacteriology, 2004, 186, 1503-1517.	2.2	81
10	Genomic Analysis of Isolates From the United Kingdom 2012 Pertussis Outbreak Reveals That Vaccine Antigen Genes Are Unusually Fast Evolving. Journal of Infectious Diseases, 2015, 212, 294-301.	4.0	79
11	Comparison of the Genome Sequence of the Poultry Pathogen Bordetella avium with Those of B. bronchiseptica , B. pertussis , and B. parapertussis Reveals Extensive Diversity in Surface Structures Associated with Host Interaction. Journal of Bacteriology, 2006, 188, 6002-6015.	2.2	75
12	Genetic Basis for Lipopolysaccharide O-Antigen Biosynthesis in Bordetellae. Infection and Immunity, 1999, 67, 3763-3767.	2.2	74
13	Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics, 2016, 17, 767.	2.8	70
14	PERISCOPE: road towards effective control of pertussis. Lancet Infectious Diseases, The, 2019, 19, e179-e186.	9.1	67
15	Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infection, Genetics and Evolution, 2016, 40, 136-143.	2.3	64
16	Comparative Toll-Like Receptor 4-Mediated Innate Host Defense to Bordetella Infection. Infection and Immunity, 2005, 73, 8144-8152.	2.2	63
17	Role of Bordetella O Antigen in Respiratory Tract Infection. Infection and Immunity, 2003, 71, 86-94.	2.2	60
18	Complete Structures of Bordetella bronchiseptica and Bordetella parapertussis Lipopolysaccharides. Journal of Biological Chemistry, 2006, 281, 18135-18144.	3.4	55

ANDREW PRESTON

#	Article	IF	CITATIONS
19	pagP Is Required for Resistance to Antibody-Mediated Complement Lysis during Bordetella bronchiseptica Respiratory Infection. Infection and Immunity, 2004, 72, 2837-2842.	2.2	54
20	Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology (United Kingdom), 2003, 149, 3231-3237.	1.8	53
21	Bacterial toxins: Offensive, defensive, or something else altogether?. PLoS Pathogens, 2017, 13, e1006452.	4.7	53
22	Ciliostasis is a key early event during colonization of canine tracheal tissue by Bordetella bronchiseptica. Microbiology (United Kingdom), 2004, 150, 2843-2855.	1.8	47
23	Controlled Human Infection With Bordetella pertussis Induces Asymptomatic, Immunizing Colonization. Clinical Infectious Diseases, 2020, 71, 403-411.	5.8	40
24	Mannose-resistant <i>Proteus</i> -like and <i>P. mirabilis</i> fimbriae have specific and additive roles in <i>P. mirabilis</i> urinary tract infections. FEMS Immunology and Medical Microbiology, 2007, 51, 125-133.	2.7	36
25	New aspects of the role of MR/P fimbriae inProteus mirabilisurinary tract infection. FEMS Immunology and Medical Microbiology, 2001, 31, 113-120.	2.7	34
26	Relaxed Acyl Chain Specificity of Bordetella UDP-N-acetylglucosamine Acyltransferases. Journal of Biological Chemistry, 2002, 277, 18281-18290.	3.4	33
27	Oligosaccharide conjugates of <i>Bordetella pertussis</i> and <i>bronchiseptica</i> induce bactericidal antibodies, an addition to pertussis vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4087-4092.	7.1	32
28	Altered lipopolysaccharide characteristic of the I69 phenotype in Haemophilus influenzae results from mutations in a novel gene, isn. Journal of Bacteriology, 1996, 178, 396-402.	2.2	31
29	Biosynthesis of a Rare Di-N-Acetylated Sugar in the Lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis Occurs via an Identical Scheme despite Different Gene Clusters. Journal of Bacteriology, 2008, 190, 6060-6069.	2.2	28
30	Bordetella pertussisevolution in the (functional) genomics era. Pathogens and Disease, 2015, 73, ftv064.	2.0	25
31	Choosing a Cloning Vector. , 2003, 235, 19-26.		24
32	Expression of the Primary Carbohydrate Component of the Bordetella bronchiseptica Biofilm Matrix Is Dependent on Growth Phase but Independent of Bvg Regulation. Journal of Bacteriology, 2006, 188, 6680-6687.	2.2	23
33	Resolving the complex Bordetella pertussis genome using barcoded nanopore sequencing. Microbial Genomics, 2018, 4, .	2.0	22
34	Identification and biochemical characterization of two novel UDP-2,3-diacetamido-2,3-dideoxy-α- <scp>D</scp> -glucuronic acid 2-epimerases from respiratory pathogens. Biochemical Journal, 2007, 405, 123-130.	3.7	21
35	Predicting Protein Function from Structure—The Roles of Short-chain Dehydrogenase/Reductase Enzymes in Bordetella O-antigen Biosynthesis. Journal of Molecular Biology, 2007, 374, 749-763.	4.2	21
36	Enzymatic Modification of Lipid A by ArnT Protects Bordetella bronchiseptica against Cationic Peptides and Is Required for Transmission. Infection and Immunity, 2014, 82, 491-499.	2.2	21

ANDREW PRESTON

#	Article	IF	CITATIONS
37	Evidence for Horizontal Gene Transfer of Two Antigenically Distinct O Antigens in <i>Bordetella bronchiseptica</i> . Infection and Immunity, 2009, 77, 3249-3257.	2.2	20
38	<i>Bordetella pertussis</i> isolates vary in their interactions with human complement components. Emerging Microbes and Infections, 2018, 7, 1-11.	6.5	20
39	Mucosal immunisation of murine neonates using whole cell and acellular Pertussis vaccines. Vaccine, 2004, 22, 3595-3602.	3.8	19
40	Bordetella pertussis: the intersection of genomics and pathobiology. Cmaj, 2005, 173, 55-62.	2.0	18
41	The O Antigen Is a Critical Antigen for the Development of a Protective Immune Response to <i>Bordetella parapertussis</i> . Infection and Immunity, 2009, 77, 5050-5058.	2.2	16
42	Mutational analysis of the Bordetella pertussis wlb LPS biosynthesis locus. Microbial Pathogenesis, 2002, 33, 91-95.	2.9	15
43	Chemical synthesis of UDP-Glc-2,3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa. Organic and Biomolecular Chemistry, 2009, 7, 1203.	2.8	14
44	Horizontally acquired divergent O-antigen contributes to escape from cross-immunity in the classical bordetellae. BMC Evolutionary Biology, 2013, 13, 209.	3.2	13
45	The role of <i>B. pertussis</i> vaccine antigen gene variants in pertussis resurgence and possible consequences for vaccine development. Human Vaccines and Immunotherapeutics, 2016, 12, 1274-1276.	3.3	11
46	How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis. Advances in Experimental Medicine and Biology, 2019, 1183, 1-17.	1.6	11
47	IEIIS Meeting minireview: Bordetella evolution: lipid A and Toll-like receptor 4. Journal of Endotoxin Research, 2007, 13, 243-247.	2.5	10
48	Antigenic Variation among Bordetella. Journal of Biological Chemistry, 2010, 285, 26869-26877.	3.4	10
49	Comparative genomic analyses of the Taylorellae. Veterinary Microbiology, 2012, 159, 195-203.	1.9	9
50	The evolution of <i>Bordetella pertussis</i> has selected for mutations of <i>acr</i> that lead to sensitivity to hydrophobic molecules and fatty acids. Emerging Microbes and Infections, 2019, 8, 603-612.	6.5	9
51	Molecular genetics and role in infection of environmentally regulated lipopolysaccharide expression. International Journal of Medical Microbiology, 2002, 292, 7-15.	3.6	8
52	Post-assembly Modification of Bordetella bronchiseptica O Polysaccharide by a Novel Periplasmic Enzyme Encoded by wbmE. Journal of Biological Chemistry, 2009, 284, 1474-1483.	3.4	8
53	The Bordetella avium <i>BAV1965</i> - <i>1962</i> Fimbrial Locus Is Regulated by Temperature and Produces Fimbriae Involved in Adherence to Turkey Tracheal Tissue. Infection and Immunity, 2011, 79, 2423-2429.	2.2	8
54	Bordetella parapertussis PagP Mediates the Addition of Two Palmitates to the Lipopolysaccharide Lipid A. Journal of Bacteriology, 2015, 197, 572-580.	2.2	8

ANDREW PRESTON

#	Article	IF	CITATIONS
55	An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. Journal of Infectious Diseases, 2017, 216, 899-906.	4.0	8
56	A curated genome-scale metabolic model of Bordetella pertussis metabolism. PLoS Computational Biology, 2017, 13, e1005639.	3.2	8
57	Fundamental differences in physiology of Bordetella pertussis dependent on the two-component system Bvg revealed by gene essentiality studies. Microbial Genomics, 2020, 6, .	2.0	8
58	Plasticity of fimbrial genotype and serotype within populations of Bordetella pertussis: analysis by paired flow cytometry and genome sequencing. Microbiology (United Kingdom), 2014, 160, 2030-2044.	1.8	7
59	Invited review: The molecular genetics and role in infection of lipopolysaccharide biosynthesis in the Bordetellae. Journal of Endotoxin Research, 2001, 7, 251-261.	2.5	6
60	A New Era of Research into Bordetella pertussis Pathogenesis. Journal of Infection, 2002, 44, 13-16.	3.3	5
61	Investigation of core machinery for biosynthesis of Vi antigen capsular polysaccharides in Gram-negative bacteria. Journal of Biological Chemistry, 2022, 298, 101486.	3.4	4
62	Overexpression, purification, crystallization and data collection on theBordetella pertussis wlbD gene product, a putative UDP-GlcNAc 2′-epimerase. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1310-1312.	2.5	3
63	A qPCR assay for Bordetella pertussis cells that enumerates both live and dead bacteria. PLoS ONE, 2020, 15, e0232334.	2.5	3
64	Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH fromBordetella bronchiseptica. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 711-715.	0.7	2
65	Comparative genomics of Bordetella pertussis isolates from New Zealand, a country with an uncommonly high incidence of whooping cough. Microbial Genomics, 2022, 8, .	2.0	2
66	Biochemical and Structural Analysis of the Role of the Wlb Gene Locus in Bordetella Pertussis Lipopolysaccharide Biosynthesis. Scientific World Journal, The, 2002, 2, 55-56.	2.1	1
67	Evolution of <i>Bordetella pertussis</i> and <i>Bordetella parapertussis</i> as Deduced from Comparative Genome Analyses. , 0, , 397-405.		0
68	Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microbial Genomics, 2022, 8, .	2.0	0