
## Stephen T Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107593/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science, 2011, 332, 53-58.                                                                                                                     | 12.6 | 1,510     |
| 2  | Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 2007, 5, 475-482.                                                                                        | 4.0  | 1,317     |
| 3  | Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5738-5742.                                       | 7.1  | 1,061     |
| 4  | Scaling environmental change through the communityâ€level: a traitâ€based responseâ€andâ€effect<br>framework for plants. Global Change Biology, 2008, 14, 1125-1140.                                                | 9.5  | 981       |
| 5  | Reid's Paradox of Rapid Plant Migration. BioScience, 1998, 48, 13-24.                                                                                                                                               | 4.9  | 646       |
| 6  | Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends in Ecology and Evolution, 2010, 25, 153-160.                                                     | 8.7  | 560       |
| 7  | Space can substitute for time in predicting climate-change effects on biodiversity. Proceedings of the<br>National Academy of Sciences of the United States of America, 2013, 110, 9374-9379.                       | 7.1  | 551       |
| 8  | Responses of plant populations and communities to environmental changes of the late Quaternary.<br>Paleobiology, 2000, 26, 194-220.                                                                                 | 2.0  | 537       |
| 9  | Ecological Restoration in the Light of Ecological History. Science, 2009, 325, 567-569.                                                                                                                             | 12.6 | 492       |
| 10 | Pleistocene Megafaunal Collapse, Novel Plant Communities, and Enhanced Fire Regimes in North<br>America. Science, 2009, 326, 1100-1103.                                                                             | 12.6 | 458       |
| 11 | Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>19685-19692. | 7.1  | 436       |
| 12 | The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22, 2329-2352.                                                                 | 9.5  | 428       |
| 13 | MODERN ANALOGS IN QUATERNARY PALEOECOLOGY: Here Today, Gone Yesterday, Gone Tomorrow?.<br>Annual Review of Earth and Planetary Sciences, 2004, 32, 495-537.                                                         | 11.0 | 418       |
| 14 | Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.                                                                                | 4.0  | 378       |
| 15 | Managing Climate Change Refugia for Climate Adaptation. PLoS ONE, 2016, 11, e0159909.                                                                                                                               | 2.5  | 324       |
| 16 | A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages. Holocene, 2005, 15, 321-328.                                                                         | 1.7  | 318       |
| 17 | Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361, 920-923.                                                                                                  | 12.6 | 307       |
| 18 | The changing role of history in restoration ecology. Frontiers in Ecology and the Environment, 2014, 12, 499-506.                                                                                                   | 4.0  | 299       |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Vegetation and environment in Eastern North America during the Last Glacial Maximum. Quaternary<br>Science Reviews, 2000, 19, 489-508.                                                            | 3.0  | 283       |
| 20 | Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems.<br>Science, 2017, 355, .                                                                            | 12.6 | 260       |
| 21 | Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 2013, 10, 929-944.                                                                            | 3.3  | 257       |
| 22 | Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions.<br>Botanical Review, The, 1999, 65, 39-75.                                                       | 3.9  | 253       |
| 23 | Mapped plant-macrofossil and pollen records of late quaternary vegetation change in Eastern North<br>America. Quaternary Science Reviews, 1997, 16, 1-70.                                         | 3.0  | 230       |
| 24 | Responses of plant populations and communities to environmental changes of the late Quaternary.<br>Paleobiology, 2000, 26, 194-220.                                                               | 2.0  | 227       |
| 25 | Foundations of translational ecology. Frontiers in Ecology and the Environment, 2017, 15, 541-550.                                                                                                | 4.0  | 212       |
| 26 | The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource.<br>Quaternary Research, 2018, 89, 156-177.                                                       | 1.7  | 210       |
| 27 | Conservation Paleobiology: Leveraging Knowledge of the Past to Inform Conservation and Restoration. Annual Review of Earth and Planetary Sciences, 2015, 43, 79-103.                              | 11.0 | 197       |
| 28 | Pollen source area and representation in small lakes of the northeastern United States. Review of<br>Palaeobotany and Palynology, 1990, 63, 53-76.                                                | 1.5  | 190       |
| 29 | Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Organic<br>Geochemistry, 2006, 37, 1505-1513.                                                                | 1.8  | 190       |
| 30 | The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy, 2003, 3, 149-157.                                   | 5.1  | 177       |
| 31 | Late Quaternary extinction of a tree species in eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13847-13852.                    | 7.1  | 174       |
| 32 | Community ecology in a changing environment: Perspectives from the Quaternary. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4915-4921.             | 7.1  | 139       |
| 33 | Ancient DNA from lake sediments: Bridging the gap between paleoecology and genetics. BMC<br>Evolutionary Biology, 2011, 11, 30.                                                                   | 3.2  | 126       |
| 34 | ROLE OF MULTIDECADAL CLIMATE VARIABILITY IN A RANGE EXTENSION OF PINYON PINE. Ecology, 2006, 87, 1124-1130.                                                                                       | 3.2  | 125       |
| 35 | Widespread drought episodes in the western Great Lakes region during the past 2000 years:<br>Geographic extent and potential mechanisms. Earth and Planetary Science Letters, 2006, 242, 415-427. | 4.4  | 123       |
| 36 | Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution,<br>multi-proxy record from Silver Lake, Ohio. Quaternary Science Reviews, 2012, 34, 66-80.       | 3.0  | 123       |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A high-resolution record of late-Holocene moisture variability from a Michigan raised bog, USA.<br>Holocene, 2003, 13, 863-876.                                                                                                                 | 1.7  | 122       |
| 38 | Cracking the Code of Biodiversity Responses to Past Climate Change. Trends in Ecology and Evolution, 2018, 33, 765-776.                                                                                                                         | 8.7  | 119       |
| 39 | Patterns and sources of multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky Mountains. Geophysical Research Letters, 2003, 30, .                                                               | 4.0  | 116       |
| 40 | Climatic determinism in phytogeographic regionalization: A test from the Irano-Turanian region, SW and Central Asia. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 237-249.                                         | 1.2  | 113       |
| 41 | Quantitative representation of local forest composition in forestâ€floor pollen assemblages. Journal of Ecology, 1998, 86, 474-490.                                                                                                             | 4.0  | 103       |
| 42 | Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .                                                                                                                                                      | 12.6 | 98        |
| 43 | Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. , 1994, , 253-286.                                                                                              |      | 97        |
| 44 | Paleoecoinformatics: applying geohistorical data to ecological questions. Trends in Ecology and Evolution, 2012, 27, 104-112.                                                                                                                   | 8.7  | 96        |
| 45 | Climate remains an important driver of postâ€European vegetation change in the eastern United States.<br>Global Change Biology, 2015, 21, 2105-2110.                                                                                            | 9.5  | 96        |
| 46 | INFLUENCE OF LANDSCAPE STRUCTURE AND CLIMATE VARIABILITY ON A LATE HOLOCENE PLANT MIGRATION.<br>Ecological Monographs, 2003, 73, 567-583.                                                                                                       | 5.4  | 95        |
| 47 | Holocene Vegetation Patterns in the Adirondack Mountains. Ecology, 1991, 72, 641-653.                                                                                                                                                           | 3.2  | 93        |
| 48 | Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two<br>glacial–interglacial cycles in the continental Middle East for the Irano-Turanian flora. Review of<br>Palaeobotany and Palynology, 2012, 172, 10-20. | 1.5  | 92        |
| 49 | Late Glacial and Holocene vegetation history and paleoclimate of the Kaibab Plateau, Arizona.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 153, 179-201.                                                                         | 2.3  | 89        |
| 50 | Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan. Quaternary<br>Research, 2004, 61, 1-13.                                                                                                                 | 1.7  | 86        |
| 51 | Human Impacts in Pine Forests: Past, Present, and Future. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 275-297.                                                                                                              | 8.3  | 85        |
| 52 | A Paleoecological Test of a Classical Hydrosere in the Lake Michigan Dunes. Ecology, 1988, 69, 928-936.                                                                                                                                         | 3.2  | 81        |
| 53 | Impacts of climate change on species, populations and communities: palaeobiogeographical insights and frontiers. Progress in Physical Geography, 2008, 32, 139-172.                                                                             | 3.2  | 81        |
| 54 | The Precision Problem in Conservation and Restoration. Trends in Ecology and Evolution, 2016, 31, 820-830.                                                                                                                                      | 8.7  | 81        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The IPBES Global Assessment: Pathways to Action. Trends in Ecology and Evolution, 2020, 35, 407-414.                                                                                                                                 | 8.7  | 77        |
| 56 | Managing for RADical ecosystem change: applying the Resistâ€Acceptâ€Direct (RAD) framework. Frontiers<br>in Ecology and the Environment, 2021, 19, 461-469.                                                                          | 4.0  | 77        |
| 57 | A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records. Quaternary Science Reviews, 2011, 30, 1926-1939.                                          | 3.0  | 76        |
| 58 | Responding to Ecosystem Transformation: Resist, Accept, or Direct?. Fisheries, 2021, 46, 8-21.                                                                                                                                       | 0.8  | 73        |
| 59 | Deposition times in the northeastern United States during the Holocene: establishing valid priors for<br>Bayesian age models. Quaternary Science Reviews, 2012, 48, 54-60.                                                           | 3.0  | 71        |
| 60 | Government: Plan for ecosystem services. Science, 2016, 351, 1037-1037.                                                                                                                                                              | 12.6 | 71        |
| 61 | Using Forest Patchiness to Determine Pollen Source Areas of Closed-Canopy Pollen Assemblages.<br>Journal of Ecology, 1994, 82, 88.                                                                                                   | 4.0  | 70        |
| 62 | Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown known knowns and unknowns. Quaternary Science Reviews, 2012, 49, 1-15.                                                                    | 3.0  | 68        |
| 63 | Multiâ€decadal drought and amplified moisture variability drove rapid forest community change in a<br>humid region. Ecology, 2012, 93, 219-226.                                                                                      | 3.2  | 68        |
| 64 | Differential hydrogen isotopic ratios of Sphagnum and vascular plant biomarkers in ombrotrophic<br>peatlands as a quantitative proxy for precipitation—evaporation balance. Geochimica Et Cosmochimica<br>Acta, 2010, 74, 1407-1416. | 3.9  | 66        |
| 65 | Vegetation, environment, and time: The origination and termination of ecosystems. Journal of Vegetation Science, 2006, 17, 549-557.                                                                                                  | 2.2  | 65        |
| 66 | TREE-RING BASED RECONSTRUCTIONS OF INTERANNUAL TO DECADAL SCALE PRECIPITATION VARIABILITY FOR NORTHEASTERN UTAH SINCE 1226 A.D Journal of the American Water Resources Association, 2004, 40, 947-960.                               | 2.4  | 60        |
| 67 | Developing an Integrated History and future of People on Earth (IHOPE). Current Opinion in Environmental Sustainability, 2012, 4, 106-114.                                                                                           | 6.3  | 59        |
| 68 | Toward an Integrated History to Guide the Future. Ecology and Society, 2011, 16, .                                                                                                                                                   | 2.3  | 58        |
| 69 | Paleoecology of a Northern Michigan Lake and the Relationship among Climate, Vegetation, and Great<br>Lakes Water Levels. Quaternary Research, 2002, 57, 120-130.                                                                    | 1.7  | 55        |
| 70 | Tree-Ring-Based Reconstruction of Precipitation in the Bighorn Basin, Wyoming, since<br>1260 <scp>a.d</scp> . Journal of Climate, 2004, 17, 3855-3865.                                                                               | 3.2  | 54        |
| 71 | A 40,000-year woodrat-midden record of vegetational and biogeographical dynamics in north-eastern<br>Utah, USA. Journal of Biogeography, 2005, 32, 1085-1106.                                                                        | 3.0  | 54        |
| 72 | Movers and Stayers: Novel Assemblages in Changing Environments. Trends in Ecology and Evolution, 2018, 33, 116-128.                                                                                                                  | 8.7  | 52        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Natural, potential and actual vegetation in <scp>N</scp> orth <scp>A</scp> merica. Journal of<br>Vegetation Science, 2013, 24, 772-776.                                              | 2.2 | 50        |
| 74 | Developing a translational ecology workforce. Frontiers in Ecology and the Environment, 2017, 15, 587-596.                                                                           | 4.0 | 50        |
| 75 | Differentiating Climatic and Successional Influences on Long-Term Development of a Marsh. Ecology,<br>1996, 77, 1765-1778.                                                           | 3.2 | 49        |
| 76 | Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data. Quaternary Science Reviews, 2016, 137, 156-175.    | 3.0 | 49        |
| 77 | Novel and Lost Forests in the Upper Midwestern United States, from New Estimates of Settlement-Era<br>Composition, Stem Density, and Biomass. PLoS ONE, 2016, 11, e0151935.          | 2.5 | 48        |
| 78 | The first 100 years of pollen analysis. Nature Plants, 2017, 3, .                                                                                                                    | 9.3 | 47        |
| 79 | Contributions of longâ€distance dispersal to population growth in colonising <i>Pinus ponderosa</i> populations. Ecology Letters, 2013, 16, 380-389.                                 | 6.4 | 46        |
| 80 | Late-glacial and Holocene acidity changes in Adirondack (N.Y.) Lakes. , 1986, , 251-274.                                                                                             |     | 46        |
| 81 | The role of Late Holocene climate variability in the expansion of yellow birch in the western Great<br>Lakes region. Diversity and Distributions, 2002, 8, 275-284.                  | 4.1 | 44        |
| 82 | Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from<br>Cupola Pond, Missouri. Quaternary Science Reviews, 2017, 170, 174-187.          | 3.0 | 44        |
| 83 | Making a stand: five centuries of population growth in colonizing populations ofPinus ponderosa.<br>Ecology, 2012, 93, 1071-1081.                                                    | 3.2 | 43        |
| 84 | Species differentiation of North American spruce ( <i>Picea</i> ) based on morphological and anatomical characteristics of needles. Canadian Journal of Botany, 2000, 78, 1367-1383. | 1.1 | 41        |
| 85 | Decomposing the midâ€Holocene <i>Tsuga</i> decline in eastern North America. Ecology, 2012, 93,<br>1841-1852.                                                                        | 3.2 | 40        |
| 86 | CRITICAL ISSUES OF SCALE IN PALEOECOLOGY. Palaios, 2009, 24, 1-4.                                                                                                                    | 1.3 | 39        |
| 87 | Late Wisconsinan Vegetation and Environment of the Tunica Hills Region, Louisiana/Mississippi.<br>Quaternary Research, 1994, 41, 316-325.                                            | 1.7 | 38        |
| 88 | Palynological and AVHRR observations of modern vegetational gradients in eastern North America.<br>Holocene, 2003, 13, 485-497.                                                      | 1.7 | 38        |
| 89 | Looking forward from the past: history, ecology, and conservation. Frontiers in Ecology and the Environment, 2007, 5, 455-455.                                                       | 4.0 | 38        |
| 90 | Pollen representation of vegetational patterns along an elevational gradient. Journal of Vegetation<br>Science, 1991, 2, 613-624.                                                    | 2.2 | 37        |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy, 2003, 3, 149-157.                                                | 5.1  | 36        |
| 92  | Alexander von Humboldt and the General Physics of the Earth. Science, 2009, 324, 596-597.                                                                                                                      | 12.6 | 36        |
| 93  | Engaging with novel ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 423-423.                                                                                                                    | 4.0  | 35        |
| 94  | Transformational ecology and climate change. Science, 2021, 373, 1085-1086.                                                                                                                                    | 12.6 | 35        |
| 95  | Vegetation history in central Kentucky and Tennessee (USA) during the last glacial and deglacial periods. Quaternary Research, 2012, 79, 189-198.                                                              | 1.7  | 33        |
| 96  | Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies. Quaternary Science Reviews, 2018, 182, 78-92.                                     | 3.0  | 32        |
| 97  | Classification tree and minimum-volume ellipsoid analyses of the distribution of ponderosa pine in the western USA. Journal of Biogeography, 2006, 33, 342-360.                                                | 3.0  | 30        |
| 98  | Climatic history of the northeastern United States during the past 3000 years. Climate of the Past, 2017, 13, 1355-1379.                                                                                       | 3.4  | 29        |
| 99  | Exploration and calibration of pollen/vegetation relationships: a PC program for the extended R-value models. Review of Palaeobotany and Palynology, 1995, 84, 365-374.                                        | 1.5  | 28        |
| 100 | Ecological stability in a changing world? Reassessment of the palaeoenvironmental history of<br>Cuatrociénegas, Mexico. Journal of Biogeography, 2008, 35, 188-190.                                            | 3.0  | 28        |
| 101 | Holocene Vegetation and Climate History of the Northern Bighorn Basin, Southern Montana.<br>Quaternary Research, 2002, 58, 171-181.                                                                            | 1.7  | 27        |
| 102 | Late-Glacial Vegetation Associated with Caribou and Mastodon in Central Indiana. Quaternary<br>Research, 1982, 17, 241-257.                                                                                    | 1.7  | 26        |
| 103 | The Burramys Project: a conservationist's reach should exceed history's grasp, or what is the fossil record for?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190221. | 4.0  | 26        |
| 104 | Pollen dispersal and representation on an isolated, forested plateau*. New Phytologist, 1994, 128, 181-193.                                                                                                    | 7.3  | 25        |
| 105 | The effects of anthropogenic land cover change on pollen-vegetation relationships in the American<br>Midwest. Anthropocene, 2016, 15, 60-71.                                                                   | 3.3  | 25        |
| 106 | Development of genetic diversity, differentiation and structure over 500Âyears in four ponderosa pine<br>populations. Molecular Ecology, 2013, 22, 2640-2652.                                                  | 3.9  | 24        |
| 107 | Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of<br>a small lake in central Upper Michigan. Quaternary Science Reviews, 2014, 98, 60-73.                     | 3.0  | 24        |
| 108 | Are conservation organizations configured for effective adaptation to global change?. Frontiers in Ecology and the Environment, 2015, 13, 163-169.                                                             | 4.0  | 24        |

| #   | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Validating the use of woodrat ( <i>Neotoma</i> ) middens for documenting natural invasions. Journal of Biogeography, 2004, 31, 333-342.                                                                                                                   | 3.0  | 22        |
| 110 | Documenting Natural and Human-Caused Plant Invasions Using Paleoecological Methods. Springer Series on Environmental Management, 1997, , 37-55.                                                                                                           | 0.3  | 21        |
| 111 | Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 2007, 5, 475-482.                                                                                                                              | 4.0  | 21        |
| 112 | Pollen and Macrofossils from Wisconsinan Interstadial Sediments in Northeastern Georgia.<br>Quaternary Research, 1993, 39, 99-106.                                                                                                                        | 1.7  | 20        |
| 113 | Forest genetics in space and time. New Phytologist, 2006, 171, 1-3.                                                                                                                                                                                       | 7.3  | 20        |
| 114 | Pollen dispersal and representation on an offshore island. New Phytologist, 1992, 122, 187-202.                                                                                                                                                           | 7.3  | 18        |
| 115 | Temporal density of pollen sampling affects age determination of the mid-Holocene hemlock (Tsuga)<br>decline. Quaternary Science Reviews, 2012, 45, 54-59.                                                                                                | 3.0  | 18        |
| 116 | Species differentiation of North American spruce (Picea) based on morphological and anatomical characteristics of needles. Canadian Journal of Botany, 2000, 78, 1367-1383.                                                                               | 1.1  | 17        |
| 117 | Vegetation type conversion in the US Southwest: frontline observations and management responses.<br>Fire Ecology, 2022, 18, .                                                                                                                             | 3.0  | 17        |
| 118 | Late-Glacial and Early Holocene Vegetational History at the Kolarik Mastodon Site, Northwestern<br>Indiana. American Midland Naturalist, 1986, 115, 361.                                                                                                  | 0.4  | 16        |
| 119 | <i>Summary of the Snowmastodon Project Special Volume</i> A high-elevation, multi-proxy biotic and<br>environmental record of MIS 6–4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado,<br>USA. Quaternary Research, 2014, 82, 618-634. | 1.7  | 16        |
| 120 | Toward a national, sustained U.S. ecosystem assessment. Science, 2016, 354, 838-839.                                                                                                                                                                      | 12.6 | 15        |
| 121 | Quantifying trends and uncertainty in prehistoric forest composition in the upper Midwestern United States. Ecology, 2019, 100, e02856.                                                                                                                   | 3.2  | 14        |
| 122 | Spatial Fingerprint of Younger Dryas Cooling and Warming in Eastern North America. Geophysical<br>Research Letters, 2020, 47, e2020GL090031.                                                                                                              | 4.0  | 14        |
| 123 | Persistence and expansion of ponderosa pine woodlands in the westâ€central Great Plains during the past two centuries. Journal of Biogeography, 2010, 37, 1668-1683.                                                                                      | 3.0  | 13        |
| 124 | Reliability of macrofossils in woodrat ( <i>Neotoma</i> ) middens for detecting low-density tree populations. Paleobiology, 2011, 37, 603-615.                                                                                                            | 2.0  | 13        |
| 125 | Late Holocene expansion of ponderosa pine ( <i>Pinus ponderosa</i> ) in the Central Rocky Mountains,<br><scp>USA</scp> . Journal of Biogeography, 2016, 43, 778-790.                                                                                      | 3.0  | 12        |
| 126 | Late Quaternary vegetation, climate, and fire history of the Southeast Atlantic Coastal Plain based on<br>a 30,000-yr multi-proxy record from White Pond, South Carolina, USA. Quaternary Research, 2019, 91,<br>861-880.                                 | 1.7  | 12        |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Biogeography of Pleistocene conifer species from the Ziegler Reservoir fossil site, Snowmass Village,<br>Colorado. Quaternary Research, 2014, 82, 567-574.                                                        | 1.7  | 11        |
| 128 | Response of arboreal pollen abundance to late-Holocene drought events in the Upper Midwest, USA.<br>Holocene, 2012, 22, 531-539.                                                                                  | 1.7  | 10        |
| 129 | Deglacial temperature controls on no-analog community establishment in the Great Lakes Region.<br>Quaternary Science Reviews, 2020, 234, 106245.                                                                  | 3.0  | 10        |
| 130 | Paleoecology of a Fossil Plant Assemblage from a Pre-Wisconsinan Till in Southern Illinois. American<br>Midland Naturalist, 1983, 109, 120.                                                                       | 0.4  | 9         |
| 131 | Toward an effective practice of translational ecology. Frontiers in Ecology and the Environment, 2017, 15, 540-540.                                                                                               | 4.0  | 9         |
| 132 | Comparison of settlement-era vegetation reconstructions for STEPPS and REVEALS pollen–vegetation models in the northeastern United States. Quaternary Research, 2020, 95, 23-42.                                  | 1.7  | 8         |
| 133 | Accelerator Radiocarbon Date Indicates Mid-Holocene age for Hickory Nut from Indiana Late-Glacial<br>Sediments. Quaternary Research, 1986, 25, 257-258.                                                           | 1.7  | 7         |
| 134 | Out of the Garden and into the Cooler? A Quaternary Perspective on Deep-Time Paleoecology. The<br>Paleontological Society Papers, 2000, 6, 287-308.                                                               | 0.6  | 7         |
| 135 | Identifying the pollen of an extinct spruce species in the Late Quaternary sediments of the Tunica Hills region, southâ€eastern United States. Journal of Quaternary Science, 2014, 29, 711-721.                  | 2.1  | 7         |
| 136 | Forest responses to lastâ€millennium hydroclimate variability are governed by spatial variations in ecosystem sensitivity. Ecology Letters, 2021, 24, 498-508.                                                    | 6.4  | 7         |
| 137 | 8000-year doubling of Midwestern forest biomass driven by population- and biome-scale processes.<br>Science, 2022, 376, 1491-1495.                                                                                | 12.6 | 7         |
| 138 | Humboldt for the Anthropocene. Science, 2019, 365, 1074-1076.                                                                                                                                                     | 12.6 | 6         |
| 139 | A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation. BioScience, 2021, 71, 1261-1273.                                                   | 4.9  | 6         |
| 140 | History of aPinus strobus-dominated stand in northern New York. Journal of Vegetation Science, 1997,<br>8, 425-436.                                                                                               | 2.2  | 5         |
| 141 | Comparing and improving methods for reconstructing peatland water-table depth from testate amoebae. Holocene, 2019, 29, 1350-1361.                                                                                | 1.7  | 5         |
| 142 | More than one way to kill a spruce forest: The role of fire and climate in the lateâ€glacial termination of spruce woodlands across the southern Great Lakes. Journal of Ecology, 2021, 109, 459-477.             | 4.0  | 4         |
| 143 | Assessing antiquity and turnover of terrestrial ecosystems in eastern North America using fossil<br>pollen data: A preliminary study. IOP Conference Series: Earth and Environmental Science, 2010, 9,<br>012005. | 0.3  | 3         |
| 144 | Reinventing conservation - again. Frontiers in Ecology and the Environment, 2016, 14, 519-519.                                                                                                                    | 4.0  | 3         |

| #   | Article                                                                                                                                                  | IF             | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 145 | Estimation of pollen productivity and dispersal: How pollen assemblages in small lakes represent vegetation. Ecological Monographs, 2022, 92, .          | 5.4            | 3         |
| 146 | Response to †Biodiversity "surpluses―and "deficits―are not novel issues': We agree. Trends in Ecc<br>and Evolution, 2010, 25, 621-622.                   | ol <u>gg</u> y | 2         |
| 147 | Modern pollenâ€assemblage data from small lakes paired with local forestâ€composition data in<br>northeastern United States. Ecology, 2019, 100, e02784. | 3.2            | 1         |
| 148 | Waveâ€flattening and translational science. Frontiers in Ecology and the Environment, 2020, 18, 227-227.                                                 | 4.0            | 1         |
| 149 | Provenance of invaders has scale-dependent impacts in a changing wetland ecosystem. NeoBiota, 0, 40, 51-72.                                              | 1.0            | 1         |
| 150 | Walking through time in the Lake Michigan dunes. Frontiers in Ecology and the Environment, 2011, 9, 526-527.                                             | 4.0            | 0         |
| 151 | Going where the science matters. Science, 2015, 350, 594-594.                                                                                            | 12.6           | 0         |
| 152 | Resolution of Respect. Bulletin of the Ecological Society of America, 2018, 99, e01441.                                                                  | 0.2            | 0         |