List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3105855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution of Interferon Lambda 4 Single Nucleotide Polymorphism rs11322783 Genotypes in Patients with COVID-19. Microorganisms, 2022, 10, 363.	3.6	4
2	Antiâ€IFNâ€Î±/â€Î‰ neutralizing antibodies from COVIDâ€19 patients correlate with downregulation of IFN response and laboratory biomarkers of disease severity. European Journal of Immunology, 2022, 52, 1120-1128.	2.9	29
3	Molecular Analysis in a Glioblastoma Cohort—Results of a Prospective Analysis. Journal of Personalized Medicine, 2022, 12, 685.	2.5	5
4	Type I IFN-dependent antibody response at the basis of sex dimorphism in the outcome of COVID-19. Cytokine and Growth Factor Reviews, 2021, 58, 66-74.	7.2	14
5	Tumor-on-a-chip platforms to study cancer–immune system crosstalk in the era of immunotherapy. Lab on A Chip, 2021, 21, 234-253.	6.0	34
6	αâ€adrenoceptor stimulation attenuates melanoma growth in mice. British Journal of Pharmacology, 2021, , .	5.4	5
7	Towards a Systems Immunology Approach to Unravel Responses to Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 582744.	4.8	9
8	IFN-Alpha-Mediated Differentiation of Dendritic Cells for Cancer Immunotherapy: Advances and Perspectives. Vaccines, 2020, 8, 617.	4.4	14
9	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. , 2020, 8, e000337.		610
10	Developing harmonized immune platforms: a must-have for realizing personalized therapies in solid tumors. Cell & Gene Therapy Insights, 2020, 6, 1231-1236.	0.1	0
11	Autoantibodies Specific to ERα are Involved in Tamoxifen Resistance in Hormone Receptor Positive Breast Cancer. Cells, 2019, 8, 750.	4.1	8
12	Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. Journal of Experimental and Clinical Cancer Research, 2019, 38, 432.	8.6	74
13	The Janus Face of Tumor Microenvironment Targeted by Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 4320.	4.1	43
14	Optimisation, harmonisation and standardisation of the direct mycobacterial growth inhibition assay using cryopreserved human peripheral blood mononuclear cells. Journal of Immunological Methods, 2019, 469, 1-10.	1.4	28
15	Inflammatory cytokines associated with cancer growth induce mitochondria and cytoskeleton alterations in cardiomyocytes. Journal of Cellular Physiology, 2019, 234, 20453-20468.	4.1	29
16	Dendritic cells modulate câ€kit expression on the edge between activation and death. European Journal of Immunology, 2019, 49, 534-545.	2.9	7
17	Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers, 2019, 11, 1943.	3.7	73
18	Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death and Differentiation, 2018, 25, 477-485.	11.2	71

#	Article	IF	CITATIONS
19	Sexual Dimorphism of Immune Responses: A New Perspective in Cancer Immunotherapy. Frontiers in Immunology, 2018, 9, 552.	4.8	74
20	The Natural Agonist of Estrogen Receptor β Silibinin Plays an Immunosuppressive Role Representing a Potential Therapeutic Tool in Rheumatoid Arthritis. Frontiers in Immunology, 2018, 9, 1903.	4.8	39
21	Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis. PLoS ONE, 2018, 13, e0189477.	2.5	11
22	Antitumor Effects of Epidrug/IFNα Combination Driven by Modulated Gene Signatures in Both Colorectal Cancer and Dendritic Cells. Cancer Immunology Research, 2017, 5, 604-616.	3.4	27
23	3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Scientific Reports, 2017, 7, 1093.	3.3	130
24	Biphasic effects of propranolol on tumour growth in B16F10 melanomaâ€bearing mice. British Journal of Pharmacology, 2017, 174, 139-149.	5.4	34
25	Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer. Oncotarget, 2017, 8, 77110-77120.	1.8	59
26	New derivatives of the antimalarial drug Pyrimethamine in the control of melanoma tumor growth: an in vitro and in vivo study. Journal of Experimental and Clinical Cancer Research, 2016, 35, 137.	8.6	21
27	CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis. Nanoscale, 2016, 8, 7562-7571.	5.6	15
28	IFN-α potentiates the direct and immune-mediated antitumor effects of epigenetic drugs on both metastatic and stem cells of colorectal cancer. Oncotarget, 2016, 7, 26361-26373.	1.8	25
29	The gender perspective in cancer research and therapy: novel insights and on-going hypotheses. Annali Dell'Istituto Superiore Di Sanita, 2016, 52, 213-22.	0.4	30
30	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686
31	A multidisciplinary study using <i>in vivo</i> tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. Journal of Immunotoxicology, 2014, 11, 337-346.	1.7	48
32	Cancer-driven dynamics of immune cells in a microfluidic environment. Scientific Reports, 2014, 4, 6639.	3.3	68
33	Abstract 1656: CXCR4 antagonist-expressing liposomes reduce lung metastases and deliver drugs to CXCR4 expressing cells: a new drug-targeting device. , 2014, , .		0
34	Novel allergic asthma model demonstrates ST2-dependent dendritic cell targeting by cypress pollen. Journal of Allergy and Clinical Immunology, 2013, 132, 686-695.e7.	2.9	22
35	<i><scp>M</scp>ycobacterium tuberculosis</i> <scp>P</scp> st <scp>S</scp> 1 amplifies <scp>IFN</scp> â€i³ and induces <scp>IL</scp> â€i7/ <scp>IL</scp> â€i22 responses by unrelated memory <scp>CD</scp> 4 ⁺ <scp>T</scp> cells via dendritic cell activation. European Journal of Immunology. 2013. 43. 2386-2397.	2.9	21
36	Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab on A Chip, 2013, 13, 229-239.	6.0	126

#	Article	IF	CITATIONS
37	The Tumor Microenvironment: A Pitch for Multiple Players. Frontiers in Oncology, 2013, 3, 90.	2.8	121
38	Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response. Frontiers in Immunology, 2013, 4, 483.	4.8	113
39	The dual role of IRF8 in cancer immunosurveillance. Oncolmmunology, 2013, 2, e25476.	4.6	7
40	Interferon Regulatory Factor 8-Deficiency Determines Massive Neutrophil Recruitment but T Cell Defect in Fast Growing Granulomas during Tuberculosis. PLoS ONE, 2013, 8, e62751.	2.5	6
41	IFN-α Regulates Blimp-1 Expression via miR-23a and miR-125b in Both Monocytes-Derived DC and pDC. PLoS ONE, 2013, 8, e72833.	2.5	26
42	Apicidin and Docetaxel Combination Treatment Drives CTCFL Expression and HMGB1 Release Acting as Potential Antitumor Immune Response Inducers in Metastatic Breast Cancer Cells. Neoplasia, 2012, 14, 855-IN19.	5.3	31
43	IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment. Neoplasia, 2012, 14, 1223-IN43.	5.3	48
44	Cyclophosphamide Synergizes with Type I Interferons through Systemic Dendritic Cell Reactivation and Induction of Immunogenic Tumor Apoptosis. Cancer Research, 2011, 71, 768-778.	0.9	304
45	Type I IFNs Control Antigen Retention and Survival of CD8α+ Dendritic Cells after Uptake of Tumor Apoptotic Cells Leading to Cross-Priming. Journal of Immunology, 2011, 186, 5142-5150.	0.8	110
46	LOX-1 as a natural IFN-α–mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells. Blood, 2010, 115, 1554-1563.	1.4	70
47	Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Molecular and Cellular Neurosciences, 2010, 45, 234-244.	2.2	93
48	IFN Regulatory Factor-1 Negatively Regulates CD4+CD25+ Regulatory T Cell Differentiation by Repressing Foxp3 Expression. Journal of Immunology, 2008, 181, 1673-1682.	0.8	76
49	The role of the interferon regulatory factor (IRF) family in dendritic cell development and function. Cytokine and Growth Factor Reviews, 2007, 18, 503-510.	7.2	69
50	The Feedback Phase of Type I Interferon Induction in Dendritic Cells Requires Interferon Regulatory Factor 8. Immunity, 2007, 27, 228-239.	14.3	154
51	The use of microarray technologies in clinical oncology. Journal of Translational Medicine, 2006, 4, 8.	4.4	10
52	ICSBP/IRF-8 differentially regulates antigen uptake during dendritic-cell development and affects antigen presentation to CD4+ T cells. Blood, 2006, 108, 609-617.	1.4	25
53	IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features. Journal of Leukocyte Biology, 2006, 80, 1500-1511.	3.3	50
54	Microarray Analysis for Monitoring the Response to Interferon. Journal of Immunotherapy, 2005, 28, 619-620.	2.4	2

#	Article	IF	CITATIONS
55	Impaired myelopoiesis in mice devoid of interferon regulatory factor 1. Leukemia, 2004, 18, 1864-1871.	7.2	42
56	IFN-α promotes the rapid differentiation of monocytes from patients with chronic myeloid leukemia into activated dendritic cells tuned to undergo full maturation after LPS treatment. Blood, 2004, 103, 980-987.	1.4	68
57	ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood, 2004, 103, 2221-2228.	1.4	98
58	ICSBP Is Essential for the Development of Mouse Type I Interferon-producing Cells and for the Generation and Activation of CD8α+ Dendritic Cells. Journal of Experimental Medicine, 2002, 196, 1415-1425.	8.5	389
59	IFN consensus sequence binding protein potentiates STAT1-dependent activation of IFNgamma -responsive promoters in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 91-96.	7.1	69
60	Regulation of Apoptosis in Myeloid Cells by Interferon Consensus Sequence–Binding Protein. Journal of Experimental Medicine, 1999, 190, 411-422.	8.5	104
61	Relationship of cytokines and cytokine signaling to immunodeficiency disorders in the mouse. Brazilian Journal of Medical and Biological Research, 1998, 31, 61-67.	1.5	7
62	A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11295-11300.	7.1	106
63	Interferon (IFN) Consensus Sequence-binding Protein, a Transcription Factor of the IFN Regulatory Factor Family, Regulates Immune Responses In Vivo through Control of Interleukin 12 Expression. Journal of Experimental Medicine, 1997, 186, 1535-1546.	8.5	153
64	Immunodeficiency and Chronic Myelogenous Leukemia-like Syndrome in Mice with a Targeted Mutation of the ICSBP Gene. Cell, 1996, 87, 307-317.	28.9	615
65	Cure of Mice with Established Metastatic Friend Leukemia Cell Tumors by a Combined Therapy with Tumor Cells Expressing Both Interferon- <i>α</i> 1 and Herpes Simplex Thymidine Kinase Followed by Ganciclovir. Human Gene Therapy, 1996, 7, 1-10.	2.7	43
66	Interleukin (IL)-4-independent immunoglobulin class switch to immunoglobulin (Ig)E in the mouse Journal of Experimental Medicine, 1996, 184, 1651-1661.	8.5	81
67	Correlation between the sensitivity or resistance to IL-2 and the response to cyclophosphamide of 4 tumors transplantable in the same murine host. International Journal of Cancer, 1995, 62, 184-190.	5.1	2
68	Synergistic anti-tumor effects of combined IL-1/IFN- $\hat{l} \pm / \hat{l}^2$ therapy in mice injected with met astatic friend erythroleukemia cells. International Journal of Cancer, 1991, 49, 274-278.	5.1	5
69	Combined interleukin 1/interleukin 2 therapy of mice injected with highly metastatic Friend leukemia cells: host antitumor mechanisms and marked effects on established metastases Journal of Experimental Medicine, 1991, 173, 313-322.	8.5	35