David B Janes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3105295/publications.pdf

Version: 2024-02-01

331670 315739 1,453 52 21 38 citations h-index g-index papers 52 52 52 2348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. International Journal of Heat and Mass Transfer, 2018, 117, 319-330.	4.8	231
2	Coâ€Percolating Grapheneâ€Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes. Advanced Functional Materials, 2013, 23, 5150-5158.	14.9	223
3	Indium selenide nanowire phase-change memory. Applied Physics Letters, 2007, 91, .	3.3	94
4	Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions. International Journal of Heat and Mass Transfer, 2018, 126, 1289-1301.	4.8	91
5	Single-Layer Graphene as a Barrier Layer for Intense UV Laser-Induced Damages for Silver Nanowire Network. ACS Nano, 2015, 9, 11121-11133.	14.6	59
6	1â^•f noise of SnO2 nanowire transistors. Applied Physics Letters, 2008, 92, 243120.	3.3	53
7	Device structure for electronic transport through individual molecules using nanoelectrodes. Applied Physics Letters, 2005, 87, 233509.	3.3	50
8	Chalcogenide-Nanowire-Based Phase Change Memory. IEEE Nanotechnology Magazine, 2008, 7, 496-502.	2.0	49
9	Role of Self-Assembled Monolayer Passivation in Electrical Transport Properties and Flicker Noise of Nanowire Transistors. ACS Nano, 2012, 6, 7352-7361.	14.6	48
10	Low-frequency noise in MoSe2 field effect transistors. Applied Physics Letters, 2015, 106, .	3.3	47
11	Super-Joule heating in graphene and silver nanowire network. Applied Physics Letters, 2015, 106, .	3.3	42
12	High performance In2O3 nanowire transistors using organic gate nanodielectrics. Applied Physics Letters, 2008, 92, 222105.	3.3	34
13	Design, Fabrication, and Characterization of a Compact Hierarchical Manifold Microchannel Heat Sink Array for Two-Phase Cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 1291-1300.	2.5	34
14	Enhanced current densities in Auâ^•moleculeâ^•GaAs devices. Applied Physics Letters, 2004, 85, 2809-2811.	3.3	32
15	Room temperature device performance of electrodeposited InSb nanowire field effect transistors. Applied Physics Letters, 2011, 98, .	3.3	31
16	Germanium Antimonide Phase-Change Nanowires for Memory Applications. IEEE Transactions on Electron Devices, 2008, 55, 3131-3135.	3.0	30
17	In situ Structural Characterization of Metalâ^'Moleculeâ^'Silicon Junctions Using Backside Infrared Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 14021-14026.	3.1	30
18	Metal/molecule/p-type GaAs heterostructure devices. Journal of Applied Physics, 2006, 100, 024503.	2.5	26

#	Article	IF	CITATIONS
19	N-Type Field-Effect Transistors Using Multiple Mg-Doped ZnO Nanorods. IEEE Nanotechnology Magazine, 2007, 6, 390-395.	2.0	23
20	Low-Frequency Noise Contributions From Channel and Contacts in InAs Nanowire Transistors. IEEE Transactions on Electron Devices, 2013, 60, 2900-2905.	3.0	22
21	Effect of contact properties on current transport in metal/molecule/GaAs devices. Journal of Applied Physics, 2006, 99, 024510.	2.5	21
22	Comparative passivation effects of self-assembled mono- and multilayers on GaAs junction field effect transistors. Applied Physics Letters, 2008, 92, 123509.	3.3	18
23	Reversible phase-change behavior in two-dimensional antimony telluride (Sb2Te3) nanosheets. Applied Physics Letters, 2018, 112, 133101.	3.3	17
24	Molecular modulation of Schottky barrier height in metal-molecule-silicon diodes: Capacitance and simulation results. Journal of Applied Physics, 2010, 107, 024505.	2.5	15
25	Nanoscale contacts between semiconducting nanowires and metallic graphenes. Applied Physics Letters, 2012, 101, 063122.	3.3	12
26	1/f Noise Sources in Dual-Gated Indium Arsenide Nanowire Transistors. IEEE Transactions on Electron Devices, 2012, 59, 1980-1987.	3.0	12
27	Evidence of Universal Temperature Scaling in Self-Heated Percolating Networks. Nano Letters, 2016, 16, 3130-3136.	9.1	11
28	Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks. Nanophotonics, 2016, 5, 180-195.	6.0	11
29	Characterization of electrochemically grafted molecular layers on silicon for electronic device applications. Journal of Applied Physics, 2009, 105, 073512.	2.5	10
30	Gold/Molecule/p\$^+\$ Si Devices: Variable Temperature Electronic Transport. IEEE Nanotechnology Magazine, 2010, 9, 494-503.	2.0	8
31	Transconductance Linearity Analysis of 1-D, Nanowire FETs in the Quantum Capacitance Limit. IEEE Transactions on Electron Devices, 2013, 60, 2071-2076.	3.0	8
32	On-chip microelectrode array and in situ transient calibration for measurement of transient concentration gradients near surfaces of 2D cell cultures. Sensors and Actuators B: Chemical, 2018, 260, 519-528.	7.8	8
33	Correlating Electronic Transport and 1/ <i>f</i> Noise in <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Mo</mml:mi><mml:mi>Se</mml:mi>Field-Effect Transistors. Physical Review Applied. 2018. 10</mml:mrow></mml:msub></mml:math>	nn;82 <td>nl?mn></td>	nl ? mn>
34	Transient Self-Heating at Nanowire Junctions in Silver Nanowire Network Conductors. IEEE Nanotechnology Magazine, 2018, 17, 1171-1180.	2.0	7
35	Red-green-blue light sensitivity of oxide nanowire transistors for transparent display applications. AIP Advances, 2013, 3, .	1.3	6
36	Transient Thermal Response of Hotspots in Graphene–Silver Nanowire Hybrid Transparent Conducting Electrodes. IEEE Nanotechnology Magazine, 2018, 17, 276-284.	2.0	6

#	Article	IF	Citations
37	Transitions between channel and contact regimes of low-frequency noise in many-layer MoS2 field effect transistors. Applied Physics Letters, 2019, 114, 113502.	3.3	6
38	Molybdenum Contacts to MoS 2 Fieldâ€Effect Transistors: Schottky Barrier Extraction, Electrical Transport, and Lowâ€Frequency Noise. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900880.	1.8	5
39	Real-time characterization of uptake kinetics of glioblastoma vs. astrocytes in 2D cell culture using microelectrode array. Analyst, The, 2018, 143, 4954-4966.	3.5	4
40	Experimental and modeling study of $1/\langle i\rangle f\langle i\rangle$ noise in multilayer MoS2 and MoSe2 field-effect transistors. Journal of Applied Physics, 2020, 128, .	2.5	4
41	Development of Interdigitated Capacitive Sensor for Real-Time Monitoring of Sub-Micron and Nanoscale Particulate Matters in Personal Sampling Device for Mining Environment. IEEE Sensors Journal, 2020, 20, 11588-11597.	4.7	3
42	Organic-Inorganic Flexible and Transparent Electronics. , 2008, , .		1
43	Electrodeposition of Indium Antimonide Nanowires in Porous Anodic Alumina Membranes. , 2010, , .		1
44	Temperature dependence of current and low-frequency noise in InAs nanowire transistors., 2013,,.		1
45	1/ <i>f</i> Noise in MoS ₂ Field Effect Transistors with Various Layer Thicknesses. Materials Research Society Symposia Proceedings, 2014, 1701, 13.	0.1	1
46	Optical characteristics of vertically aligned arrays of branched silver nanowires. , 2014, , .		1
47	High performance In <inf>2</inf> O <inf>3</inf> nanowire transistors using organic gate nanodielectrics. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
48	Metal molecule GaAs devices using redox-active organic self-assembled monolayers., 2007,,.		0
49	Barrier height modulation and dipole moments in metal-molecule-silicon diodes. , 2007, , .		0
50	Aligned single-walled carbon nanotube thin-film transistor arrays for transparent electronics. , 2008, , .		0
51	Transparent driving thin-film transistor circuits based on uniformly grown single-walled carbon nanotubes network., 2009,,.		O
52	Low-frequency noise in contact and channel regions of ambipolar InAs nanowire transistors. , 2012, , .		0