Xinyi Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3104317/publications.pdf

Version: 2024-02-01

36 papers	4,287 citations	17 h-index	31 g-index
37	37	37	6005
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health, 2014, 2, e106-e116.	6.3	3,277
2	Recent Progress in Using Biomaterials as Vitreous Substitutes. Biomacromolecules, 2015, 16, 3093-3102.	5.4	98
3	Revisiting the dangers of the coronavirus in the ophthalmology practice. Eye, 2020, 34, 1155-1157.	2.1	97
4	The Carboxyl Terminus of Brca2 Links the Disassembly of Rad51 Complexes to Mitotic Entry. Current Biology, 2009, 19, 1075-1085.	3.9	85
5	Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade. Nature Biomedical Engineering, 2019, 3, 598-610.	22.5	84
6	Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye, 2020, 34, 1341-1356.	2.1	62
7	Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomaterials Science, 2019, 7, 4603-4614.	5.4	56
8	Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering. ACS Omega, 2017, 2, 8959-8968.	3. 5	54
9	Polymeric hydrogels as a vitreous replacement strategy in the eye. Biomaterials, 2021, 268, 120547.	11.4	51
10	Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nature Communications, 2021, 12, 5675.	12.8	48
11	A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomaterials Science, 2020, 8, 926-936.	5.4	47
12	Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51. Nature Structural and Molecular Biology, 2008, 15, 1049-1058.	8.2	45
13	Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Human Molecular Genetics, 2014, 23, 6119-6128.	2.9	35
14	Antiangiogenic Nanomicelles for the Topical Delivery of Aflibercept to Treat Retinal Neovascular Disease. Advanced Materials, 2022, 34, e2108360.	21.0	32
15	Surgical Transplantation of Human RPE Stem Cell-Derived RPE Monolayers into Non-Human Primates with Immunosuppression. Stem Cell Reports, 2021, 16, 237-251.	4.8	30
16	PCL-Based Thermogelling Polymer: Molecular Weight Effects on Its Suitability as Vitreous Tamponade. ACS Applied Bio Materials, 2020, 3, 9043-9053.	4.6	27
17	High molecular weight hyper-branched PCL-based thermogelling vitreous endotamponades. Biomaterials, 2022, 280, 121262.	11.4	19
18	cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Research and Therapy, 2021, 12, 464.	5 . 5	18

#	Article	IF	CITATIONS
19	A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nature Communications, 2022, 13, 2796.	12.8	16
20	Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina., 2016, 57, 3397.		14
21	Systemic Factors Associated with Treatment Response in Diabetic Macular Edema. Journal of Ophthalmology, 2020, 2020, 1-6.	1.3	14
22	Gene-Based Therapeutics for Acquired Retinal Disease: Opportunities and Progress. Frontiers in Genetics, 2021, 12, 795010.	2.3	13
23	Highlights from the 2019 International Myopia Summit on †controversies in myopiaâ€. British Journal of Ophthalmology, 2021, 105, 1196-1202.	3.9	11
24	Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model. Stem Cell Research and Therapy, 2021, 12, 423.	5 . 5	11
25	Ethnic variations of a retinoblastoma susceptibility gene (RB1) polymorphism in eight Asian populations. Journal of Genetics, 2003, 82, 33-37.	0.7	10
26	A Pilot Study on MicroRNA Profile in Tear Fluid to Predict Response to Anti-VEGF Treatments for Diabetic Macular Edema. Journal of Clinical Medicine, 2020, 9, 2920.	2.4	10
27	Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Communications Biology, 2020, 3, 755.	4.4	10
28	A topical gel for extended ocular drug release. Nature Biomedical Engineering, 2020, 4, 1024-1025.	22.5	6
29	Retinal Pigment Epithelium Transplantation in a Non-human Primate Model for Degenerative Retinal Diseases. Journal of Visualized Experiments, 2021, , .	0.3	2
30	Developing Non-Human Primate Models of Inherited Retinal Diseases. Genes, 2022, 13, 344.	2.4	2
31	Versatile and Extendable Boronate-Based Tunable Hydrogel Networks for Patterning Applications. ACS Applied Polymer Materials, 2022, 4, 5091-5102.	4.4	2
32	Response to †Comment on: "Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseasesâ€â€™. Eye, 2021, 35, 1026-1027.	2.1	0
33	Inhibiting the executioner may prevent vision loss. Science Translational Medicine, 2020, 12, .	12.4	0
34	Adult-Human Retinal Pigment Epithelial Cell Transplantation Supports Retinal Function in Non-Human Primate Models. SSRN Electronic Journal, 0, , .	0.4	0
35	"You are what you eat!― Science Translational Medicine, 2020, 12, .	12.4	0
36	Revisiting the Alcohol Consumption Association With Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, , .	2.5	0