
Mariano Barbacid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3104127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, 2009, 9, 153-166.	28.4	3,070
2	RAS oncogenes: the first 30 years. Nature Reviews Cancer, 2003, 3, 459-465.	28.4	1,597
3	A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature, 1982, 300, 149-152.	27.8	1,369
4	The trk proto-oncogene encodes a receptor for nerve growth factor. Cell, 1991, 65, 189-197.	28.9	1,368
5	To cycle or not to cycle: a critical decision in cancer. Nature Reviews Cancer, 2001, 1, 222-231.	28.4	1,289
6	Senescence in premalignant tumours. Nature, 2005, 436, 642-642.	27.8	1,280
7	The Trk family of neurotrophin receptors. Journal of Neurobiology, 1994, 25, 1386-1403.	3.6	1,187
8	Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature, 1996, 382, 70-73.	27.8	1,154
9	Mammalian cyclin-dependent kinases. Trends in Biochemical Sciences, 2005, 30, 630-641.	7.5	1,069
10	Chronic Pancreatitis Is Essential for Induction of Pancreatic Ductal Adenocarcinoma by K-Ras Oncogenes in Adult Mice. Cancer Cell, 2007, 11, 291-302.	16.8	1,042
11	trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell, 1991, 66, 967-979.	28.9	1,040
12	Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature, 1994, 368, 246-249.	27.8	932
13	Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007, 448, 811-815.	27.8	888
14	The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 1991, 66, 395-403.	28.9	881
15	Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature, 1985, 315, 382-385.	27.8	872
16	Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genetics, 2003, 35, 25-31.	21.4	802
17	A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature, 1986, 319, 743-748.	27.8	755
18	Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature, 1983, 306, 658-661.	27.8	736

#	Article	IF	CITATIONS
19	Mammalian Cells Cycle without the D-Type Cyclin-Dependent Kinases Cdk4 and Cdk6. Cell, 2004, 118, 493-504.	28.9	719
20	The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell, 1990, 61, 647-656.	28.9	712
21	Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genetics, 1999, 22, 44-52.	21.4	711
22	A Pericyte Origin of Spinal Cord Scar Tissue. Science, 2011, 333, 238-242.	12.6	711
23	T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature, 1982, 298, 343-347.	27.8	616
24	Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature, 1994, 368, 249-251.	27.8	607
25	Neurotrophic factors and their receptors. Current Opinion in Cell Biology, 1995, 7, 148-155.	5.4	539
26	Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron, 1993, 10, 137-149.	8.1	524
27	The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell, 1991, 66, 173-183.	28.9	521
28	Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell, 2003, 4, 111-120.	16.8	518
29	Oncogenes in solid human tumours. Nature, 1982, 300, 539-542.	27.8	480
30	Nerve growth factor mediates signal transduction through trk homodimer receptors. Neuron, 1992, 9, 1067-1079.	8.1	452
31	Genetic Analysis of Ephrin-A2 and Ephrin-A5 Shows Their Requirement in Multiple Aspects of Retinocollicular Mapping. Neuron, 2000, 25, 563-574.	8.1	450
32	Pancreatitis-Induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence. Cancer Cell, 2011, 19, 728-739.	16.8	437
33	Ephrin-A5 (AL-1/RAGS) Is Essential for Proper Retinal Axon Guidance and Topographic Mapping in the Mammalian Visual System. Neuron, 1998, 20, 235-243.	8.1	428
34	Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature, 2017, 548, 234-238.	27.8	394
35	A Synthetic Lethal Interaction between K-Ras Oncogenes and Cdk4 Unveils a Therapeutic Strategy for Non-small Cell Lung Carcinoma. Cancer Cell, 2010, 18, 63-73.	16.8	373
36	Mice Lacking Brain-Derived Neurotrophic Factor Exhibit Visceral Sensory Neuron Losses Distinct from Mice Lacking NT4 and Display a Severe Developmental Deficit in Control of Breathing. Journal of Neuroscience, 1996, 16, 5361-5371.	3.6	342

#	Article	IF	CITATIONS
37	Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nature Structural and Molecular Biology, 2011, 18, 1331-1335.	8.2	342
38	EGF Receptor Signaling Is Essential for K-Ras Oncogene-Driven Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2012, 22, 318-330.	16.8	339
39	Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature, 1992, 356, 68-71.	27.8	320
40	The trk B tyrosine protein kinase is a receptor for neurotrophin-4. Neuron, 1992, 8, 947-956.	8.1	306
41	Cell cycle kinases in cancer. Current Opinion in Genetics and Development, 2007, 17, 60-65.	3.3	300
42	Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+CDS+thymocytes. Nature, 1995, 374, 474-476.	27.8	299
43	p38α MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nature Genetics, 2007, 39, 750-758.	21.4	278
44	Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO Journal, 2010, 29, 1091-1104.	7.8	267
45	c-Raf, but Not B-Raf, Is Essential for Development of K-Ras Oncogene-Driven Non-Small Cell Lung Carcinoma. Cancer Cell, 2011, 19, 652-663.	16.8	260
46	Topographic Guidance Labels in a Sensory Projection to the Forebrain. Neuron, 1998, 21, 1303-1313.	8.1	255
47	Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell, 2020, 37, 543-550.	16.8	253
48	gag Gene of mammalian type-C RNA tumour viruses. Nature, 1976, 262, 554-559.	27.8	242
49	Structural and Functional Properties of the TRK Family of Neurotrophin Receptors. Annals of the New York Academy of Sciences, 1995, 766, 442-458.	3.8	240
50	CDK inhibitors in cancer therapy: what is next?. Trends in Pharmacological Sciences, 2008, 29, 16-21.	8.7	234
51	TrkB and TrkC Signaling Are Required for Maturation and Synaptogenesis of Hippocampal Connections. Journal of Neuroscience, 1998, 18, 7336-7350.	3.6	230
52	Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nature Cell Biology, 2010, 12, 54-59.	10.3	218
53	Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell, 2005, 7, 591-598.	16.8	205
54	The European dimension for the mouse genome mutagenesis program. Nature Genetics, 2004, 36, 925-927.	21.4	195

#	Article	IF	CITATIONS
55	TrkB Signaling Is Required for Postnatal Survival of CNS Neurons and Protects Hippocampal and Motor Neurons from Axotomy-Induced Cell Death. Journal of Neuroscience, 1997, 17, 3623-3633.	3.6	182
56	Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14122-14127.	7.1	181
57	TrkA, But Not TrkC, Receptors Are Essential for Survival of Sympathetic Neurons <i>In Vivo</i> . Journal of Neuroscience, 1996, 16, 6208-6218.	3.6	180
58	Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nature Immunology, 2001, 2, 548-555.	14.5	156
59	Synchronous Onset of NGF and TrkA Survival Dependence in Developing Dorsal Root Ganglia. Journal of Neuroscience, 1996, 16, 4662-4672.	3.6	154
60	High-affinity nerve growth factor receptor (Trk) immunoreactivity is localized in cholinergic neurons of the basal forebrain and striatum in the adult rat brain. Brain Research, 1993, 612, 330-335.	2.2	153
61	Identification of cancer initiating cells in <i>K-Ras</i> driven lung adenocarcinoma. Proceedings of the United States of America, 2014, 111, 255-260.	7.1	151
62	Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nature Medicine, 2016, 22, 270-277.	30.7	150
63	DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nature Structural and Molecular Biology, 2010, 17, 718-725.	8.2	141
64	Genetically engineered mouse models of pancreatic adenocarcinoma. Molecular Oncology, 2013, 7, 232-247.	4.6	140
65	Oncogenes and human cancer: cause or consequence?. Carcinogenesis, 1986, 7, 1037-1042.	2.8	136
66	Cdk4 promotes adipogenesis through PPARÎ ³ activation. Cell Metabolism, 2005, 2, 239-249.	16.2	136
67	A Role for TrkA during Maturation of Striatal and Basal Forebrain Cholinergic Neurons <i>In Vivo</i> . Journal of Neuroscience, 1997, 17, 7644-7654.	3.6	133
68	Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1147-E1156.	7.1	128
69	Mutant K-Ras Activation of the Proapoptotic MST2 Pathway Is Antagonized by Wild-Type K-Ras. Molecular Cell, 2011, 44, 893-906.	9.7	127
70	RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nature Medicine, 2019, 25, 284-291.	30.7	125
71	Severe Sensory Deficits but Normal CNS Development in Newborn Mice Lacking TrkB and TrkC Tyrosine Protein Kinase Receptors. European Journal of Neuroscience, 1997, 9, 2045-2056.	2.6	124
72	Genetic rescue of Cdk4 null mice restores pancreatic β-cell proliferation but not homeostatic cell number. Oncogene, 2003, 22, 5261-5269.	5.9	118

#	Article	IF	CITATIONS
73	Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 2005, 7, 313-324.	16.8	106
74	Localization of the normal allele of T24 human bladder carcinoma oncogene to chromosome 11. Nature, 1982, 300, 773-774.	27.8	105
75	Control of Spermatogenesis in Mice by the Cyclin D-Dependent Kinase Inhibitors p18 Ink4c and p19 Ink4d. Molecular and Cellular Biology, 2001, 21, 3244-3255.	2.3	103
76	Mice thrive without Cdk4 and Cdk2. Molecular Oncology, 2007, 1, 72-83.	4.6	99
77	Afatinib restrains K-RAS–driven lung tumorigenesis. Science Translational Medicine, 2018, 10, .	12.4	99
78	Allele-Specific Mechanisms of Activation of MEK1 Mutants Determine Their Properties. Cancer Discovery, 2018, 8, 648-661.	9.4	97
79	A mouse model for Costello syndrome reveals an Ang Il–mediated hypertensive condition. Journal of Clinical Investigation, 2008, 118, 2169-79.	8.2	97
80	Is Cyclin D1-CDK4 kinase a bona fide cancer target?. Cancer Cell, 2006, 9, 2-4.	16.8	96
81	c-RAF Ablation Induces Regression of Advanced Kras/Trp53 Mutant Lung Adenocarcinomas by a Mechanism Independent of MAPK Signaling. Cancer Cell, 2018, 33, 217-228.e4.	16.8	93
82	Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav-mediated c-Jun N-terminal kinase activation. Oncogene, 1997, 15, 2511-2520.	5.9	87
83	Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO Journal, 2012, 31, 2498-2510.	7.8	85
84	A Braf kinase-inactive mutant induces lung adenocarcinoma. Nature, 2017, 548, 239-243.	27.8	85
85	Mutagens, oncogenes and cancer. Trends in Genetics, 1986, 2, 188-192.	6.7	84
86	Development of Highly Potent Inhibitors of Ras Farnesyltransferase Possessing Cellular andin VivoActivity. Journal of Medicinal Chemistry, 1996, 39, 224-236.	6.4	82
87	Corneal innervation and sensitivity to noxious stimuli intrkA knockout mice. European Journal of Neuroscience, 1998, 10, 146-152.	2.6	82
88	Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15155-15160.	7.1	80
89	Phosphinyl Acid-Based Bisubstrate Analog Inhibitors of Farnesyl Protein Transferase. Journal of Medicinal Chemistry, 1995, 38, 435-442.	6.4	79
90	Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF. Cancer Cell, 2019, 35, 573-587.e6.	16.8	75

#	Article	IF	CITATIONS
91	Ras farnesylation as a target for novel antitumor agents: Potent and selective farnesyl diphosphate analog inhibitors of farnesyltransferase. Drug Development Research, 1995, 34, 121-137.	2.9	68
92	Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9282-9287.	7.1	68
93	K-Ras ^{V14I} recapitulates Noonan syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16395-16400.	7.1	67
94	Evolutionary relationships between gag gene-coded proteins of murine and primate endogenous type C RNA viruses. Cell, 1977, 10, 641-648.	28.9	66
95	Transforming genes in human tumors. Journal of Cellular Biochemistry, 1982, 20, 51-61.	2.6	63
96	A giant protein that stimulates guanine nucleotide exchange on ARF1 and Rab proteins forms a cytosolic ternary complex with clathrin and Hsp70. Oncogene, 1997, 15, 1-6.	5.9	61
97	Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5015-5020.	7.1	61
98	The combined effects of trkB and trkC mutations on the innervation of the inner ear. International Journal of Developmental Neuroscience, 1998, 16, 493-505.	1.6	59
99	Toll-like Receptor-4 (TLR4) Down-regulates MicroRNA-107, Increasing Macrophage Adhesion via Cyclin-dependent Kinase 6. Journal of Biological Chemistry, 2011, 286, 25531-25539.	3.4	56
100	Cooperation between Cdk4 and p27kip1 in Tumor Development: A Preclinical Model to Evaluate Cell Cycle Inhibitors with Therapeutic Activity. Cancer Research, 2005, 65, 3846-3852.	0.9	55
101	Cdk6-Dependent Regulation of G1 Length Controls Adult Neurogenesis. Stem Cells, 2011, 29, 713-724.	3.2	54
102	Rapid Growth of Invasive Metastatic Melanoma in Carcinogen-Treated Hepatocyte Growth Factor/Scatter Factor-Transgenic Mice Carrying an Oncogenic CDK4 Mutation. American Journal of Pathology, 2006, 169, 665-672.	3.8	53
103	Overall Cdk activity modulates the DNA damage response in mammalian cells. Journal of Cell Biology, 2009, 187, 773-780.	5.2	53
104	Spontaneous and UV Radiation–Induced Multiple Metastatic Melanomas in Cdk4R24C/R24C/TPras Mice. Cancer Research, 2006, 66, 2946-2952.	0.9	52
105	Functional Reprogramming of Polyploidization in Megakaryocytes. Developmental Cell, 2015, 32, 155-167.	7.0	47
106	Therapeutic inhibition of <scp>TRF</scp> 1 impairs the growth of <i>p53</i> â€deficient <i>Kâ€Ras</i> ^{ <i>G12V</i>} <i>â€</i> induced lung cancer by induction of telomeric <scp>DNA</scp> damage. EMBO Molecular Medicine, 2015, 7, 930-949.	6.9	45
107	A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer. PLoS Genetics, 2017, 13, e1006622.	3.5	45
108	Concurrent deletion of cyclin E1 and cyclin-dependent kinase 2 in hepatocytes inhibits DNA replication and liver regeneration in mice. Hepatology, 2014, 59, 651-660.	7.3	41

#	Article	IF	CITATIONS
109	Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma. Genes and Development, 2017, 31, 1456-1468.	5.9	41
110	Management of Cancer in the Older Age Person: An Approach to Complex Medical Decisions. Oncologist, 2017, 22, 335-342.	3.7	39
111	The European Cancer Patient's Bill of Rights, update and implementation 2016. ESMO Open, 2016, 1, e000127.	4.5	36
112	The Capicua tumor suppressor: a gatekeeper of Ras signaling in development and cancer. Cell Cycle, 2018, 17, 702-711.	2.6	36
113	A Catalyst for Change: The European Cancer Patient's Bill of Rights. Oncologist, 2014, 19, 217-224.	3.7	35
114	Modeling Lung Cancer Evolution and Preclinical Response by Orthotopic Mouse Allografts. Cancer Research, 2014, 74, 5978-5988.	0.9	30
115	H-Ras Distribution and Signaling in Plasma Membrane Microdomains Are Regulated by Acylation and Deacylation Events. Molecular and Cellular Biology, 2015, 35, 1898-1914.	2.3	30
116	Severe Intellectual Disability and Enhanced Gamma-Aminobutyric Acidergic Synaptogenesis in a Novel Model of Rare RASopathies. Biological Psychiatry, 2017, 81, 179-192.	1.3	30
117	Cyclin-Dependent Kinase 4 Regulates Adult Neural Stem Cell Proliferation and Differentiation in Response to Insulin. Stem Cells, 2017, 35, 2403-2416.	3.2	29
118	Genetic Characterization of the Role of the Cip/Kip Family of Proteins as Cyclin-Dependent Kinase Inhibitors and Assembly Factors. Molecular and Cellular Biology, 2014, 34, 1452-1459.	2.3	28
119	Postnatal Schwann cell proliferation but not myelination is strictly and uniquely dependent on cyclin-dependent kinase 4 (cdk4). Molecular and Cellular Neurosciences, 2008, 37, 519-527.	2.2	26
120	Identification of ETP-46321, a potent and orally bioavailable PI3K α, δ inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3460-3466.	2.2	24
121	Targeting <i>KRAS</i> mutant lung cancer: light at the end of the tunnel. Molecular Oncology, 2022, 16, 1057-1071.	4.6	23
122	The human VAV proto-oncogene maps to chromosome region 19p12?19p13.2. Human Genetics, 1990, 86, 65-8.	3.8	21
123	H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences. Cancer Research, 2017, 77, 707-718.	0.9	21
124	Nerve Dependency of Developing and Mature Sensory Receptor Cellsa. Annals of the New York Academy of Sciences, 1998, 855, 14-27.	3.8	20
125	Rapid identification of ETP-46992, orally bioavailable PI3K inhibitor, selective versus mTOR. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5208-5214.	2.2	19
126	KRAS-driven lung adenocarcinoma: combined DDR1/Notch inhibition as an effective therapy. ESMO Open, 2016, 1, e000076.	4.5	19

#	Article	IF	CITATIONS
127	Genetically Engineered Mouse Models of K-Ras-Driven Lung and Pancreatic Tumors: Validation of Therapeutic Targets. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031542.	6.2	19
128	RAF1 kinase activity is dispensable for KRAS/p53 mutant lung tumor progression. Cancer Cell, 2021, 39, 294-296.	16.8	18
129	Genetic analysis of the role of Eph receptors in the development of the mammalian nervous system. Cell and Tissue Research, 1997, 290, 209-215.	2.9	17
130	Requirement for epithelial p38α in KRAS-driven lung tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2588-2596.	7.1	16
131	Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24415-24426.	7.1	15
132	Mouse models of cancer. Molecular Oncology, 2013, 7, 143-145.	4.6	14
133	ERF deletion rescues RAS deficiency in mouse embryonic stem cells. Genes and Development, 2018, 32, 568-576.	5.9	13
134	Evaluation of genetic melanoma vaccines in cdk4-mutant mice provides evidence for immunological tolerance against authochthonous melanomas in the skin. International Journal of Cancer, 2006, 118, 373-380.	5.1	12
135	Modeling K-Ras-driven lung adenocarcinoma in mice: preclinical validation of therapeutic targets. Journal of Molecular Medicine, 2016, 94, 121-135.	3.9	12
136	Lkb1 Loss Promotes Tumor Progression of BRAFV600E-Induced Lung Adenomas. PLoS ONE, 2013, 8, e66933.	2.5	11
137	Dynamic Regulation of Expression of KRAS and Its Effectors Determines the Ability to Initiate Tumorigenesis in Pancreatic Acinar Cells. Cancer Research, 2021, 81, 2679-2689.	0.9	11
138	KSR induces RASâ€independent MAPK pathway activation and modulates the efficacy of KRAS inhibitors. Molecular Oncology, 2022, 16, 3066-3081.	4.6	10
139	KRAS4A induces metastatic lung adenocarcinomas in vivo in the absence of the KRAS4B isoform. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
140	Opening a New GATAway for Treating KRAS-Driven Lung Tumors. Cancer Cell, 2012, 21, 598-600.	16.8	8
141	Genetic analysis of Ras genes in epidermal development and tumorigenesis. Small GTPases, 2013, 4, 236-241.	1.6	8
142	Differential Synthesis of Mammalian Type C Viral Gene Products in Infected Cells. Journal of Virology, 1977, 24, 1-7.	3.4	8
143	Definitive evidence for Club cells as progenitors for mutant <i>Kras/Trp53</i> â€deficient lung cancer. International Journal of Cancer, 2021, 149, 1670-1682.	5.1	5
144	Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor. Cancers, 2022, 14, 3102.	3.7	4

#	Article	IF	CITATIONS
145	Ras and p53: An unsuspected liaison. Molecular and Cellular Oncology, 2016, 3, e996001.	0.7	2
146	Returning Home. Cell, 2007, 129, 641-644.	28.9	1
147	TARGETING KRAS SIGNALING IN PANCREATIC CANCER Pancreatology, 2020, 20, e18.	1.1	Ο
148	Ras in epidermal proliferation. Oncotarget, 2014, 5, 5194-5195.	1.8	0