Shohei Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/310408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct observation of ultra-rapid solid phase crystallization of amorphous silicon films irradiated by micro-thermal-plasma-jet. Materials Science in Semiconductor Processing, 2021, 121, 105357.	4.0	3
2	Investigation on characteristics of millisecond solid-phase crystallized silicon films annealed by atmospheric pressure DC arc discharge micro-thermal-plasma-jet and their application to bottom-gate thin film transistors fabrication. Japanese Journal of Applied Physics, 2021, 60, 105502.	1.5	0
3	Relationship between depth of basal-plane dislocations and expanded stacking faults by application of forward current to 4H–SiC p-i-n diodes. Applied Physics Express, 2019, 12, 051007.	2.4	16
4	Structural analysis of interfacial dislocations and expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes. Japanese Journal of Applied Physics, 2019, 58, 011005.	1.5	7
5	Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p–i–n diodes. Japanese Journal of Applied Physics, 2018, 57, 04FR07.	1.5	28
6	Characterization of double Shockley-type stacking faults formed in lightly doped 4H-SiC epitaxial films. Journal of Crystal Growth, 2018, 490, 89-96.	1.5	9
7	Characterization of stacking faults with emission wavelengths of over 500 nm formed in 4H-SiC epitaxial films. Journal of Crystal Growth, 2017, 476, 99-106.	1.5	4
8	Structural analysis of double-layer Shockley stacking faults formed in heavily-nitrogen-doped 4H-SiC during annealing. Journal of Applied Physics, 2017, 122, .	2.5	21
9	Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p–i–n diodes. Applied Physics Express, 2017, 10, 081201.	2.4	17
10	High-efficiency impurity activation by precise control of cooling rate during atmospheric pressure thermal plasma jet annealing of 4H-SiC wafer. Japanese Journal of Applied Physics, 2015, 54, 06GC01.	1.5	5
11	Investigations on crack generation mechanism and crack reduction by buffer layer insertion in thermal-plasma-jet crystallization of amorphous silicon films on glass substrate. Japanese Journal of Applied Physics, 2015, 54, 01AE05.	1.5	1
12	Grain growth induced by micro-thermal-plasma-jet irradiation to narrow amorphous silicon strips. , 2014, , .		0
13	Effect of Grain Growth Control by Atmospheric Micro-Thermal- Plasma-Jet Crystallization of Amorphous Silicon Strips on TFT Characteristics. ECS Transactions, 2014, 64, 23-29.	0.5	1
14	Improvement in Characteristic Variability of TFTs Using Grain Growth Control by Micro Thermal Plasma Jet Irradiation on a-Si Strips. Journal of Display Technology, 2014, 10, 950-955.	1.2	10
15	Investigation of silicon grain structure and electrical characteristics of TFTs fabricated using different crystallized silicon films by atmospheric pressure micro-thermal-plasma-jet irradiation. Japanese Journal of Applied Physics, 2014, 53, 03DG02.	1.5	6
16	Grain Growth Control during Micro-Thermal-Plasma-Jet Irradiation Using Amorphous Si Strips and Slit Masks. ECS Transactions, 2013, 50, 29-34.	0.5	0
17	Layer Transfer and Simultaneous Crystallization Technique for Amorphous Si Films with Midair Structure Induced by Near-Infrared Semiconductor Diode Laser Irradiation and Its Application to Thin-Film Transistor Fabrication. Japanese Journal of Applied Physics, 2013, 52, 05EC01.	1.5	4
18	Leading Wave Crystallization Induced by Micro-Thermal-Plasma-Jet Irradiation of Amorphous Silicon Films. Japanese Journal of Applied Physics, 2013, 52, 05EE02.	1.5	5

Shohei Hayashi

#	Article	IF	CITATIONS
19	Highly-Crystallized Ge:H Film Growth from GeH4Very High Frequency Inductively-Coupled Plasma: Crystalline Nucleation Initiated by Ni Nanodots. Japanese Journal of Applied Physics, 2013, 52, 11NA04.	1.5	1
20	Fabrication of High-Performance Thin-Film Transistors on Glass Substrate by Atmospheric Pressure Micro-Thermal-Plasma-Jet-Induced Lateral Crystallization Technique. Japanese Journal of Applied Physics, 2012, 51, 02BH05.	1.5	2
21	Direct observation of grain growth from molten silicon formed by micro-thermal-plasma-jet irradiation. Applied Physics Letters, 2012, 101, 172111.	3.3	16
22	Fabrication of High-Performance Thin-Film Transistors on Glass Substrate by Atmospheric Pressure Micro-Thermal-Plasma-Jet-Induced Lateral Crystallization Technique. Japanese Journal of Applied Physics, 2012, 51, 02BH05.	1.5	6
23	Application of Thermal Plasma Jet Irradiation to Crystallization and Gate Insulator Improvement for High-Performance Thin-Film Transistor Fabrication. Japanese Journal of Applied Physics, 2011, 50, 03CB10.	1.5	4
24	Application of Thermal Plasma Jet Irradiation to Crystallization and Gate Insulator Improvement for High-Performance Thin-Film Transistor Fabrication. Japanese Journal of Applied Physics, 2011, 50, 03CB10.	1.5	5
25	Formation of High Crystallinity Silicon Films by High Speed Scanning of Melting Region Formed by Atmospheric Pressure DC Arc Discharge Micro-Thermal-Plasma-Jet and Its Application to Thin Film Transistor Fabrication. Applied Physics Express, 2010, 3, 061401.	2.4	16
26	Properties of Al Ohmic Contacts to n-type 4H-SiC Employing a Phosphorus-Doped and Crystallized Amorphous-Silicon Interlayer. Materials Science Forum, 0, 778-780, 649-652.	0.3	5
27	Estimation of Phosphorus-Implanted 4H-SiC Layer Recrystallization by Electron-Back-Scattering Diffraction Pattern Analysis. Materials Science Forum, 0, 821-823, 391-394.	0.3	1