
Tongbo Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transferâ€Enabled Fabrication of Graphene Wrinkle Arrays for Epitaxial Growth of AlN Films. Advanced Materials, 2022, 34, e2105851.	21.0	15
2	275 nm Deep Ultraviolet AlGaN-Based Micro-LED Arrays for Ultraviolet Communication. IEEE Photonics Journal, 2022, 14, 1-5.	2.0	14
3	Semipolar (11–22) AlN Grown on m-Plane Sapphire by Flow-Rate Modulation Epitaxy for Vacuum-Ultraviolet Photodetection. Crystal Growth and Design, 2022, 22, 1731-1737.	3.0	4
4	Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light: Science and Applications, 2022, 11, 88.	16.6	24
5	Toward Direct Growth of Ultraâ \in Flat Graphene. Advanced Functional Materials, 2022, 32, .	14.9	10
6	Atomic Mechanism of Strain Alleviation and Dislocation Reduction in Highly Mismatched Remote Heteroepitaxy Using a Graphene Interlayer. Nano Letters, 2022, 22, 3364-3371.	9.1	10
7	Semipolar (112Ì2) AlGaN-Based Solar-Blind Ultraviolet Photodetectors with Fast Response. ACS Applied Materials & Interfaces, 2022, 14, 21232-21241.	8.0	18
8	Improved barrier homogeneity in Pt/Al _{0.75} Ga _{0.25} N Schottky barrier diodes by graphene interlayer. Journal Physics D: Applied Physics, 2022, 55, 304001.	2.8	2
9	GaN-based parallel micro-light-emitting diode arrays with dual-wavelength In _x Ga _{1-x} N/GaN MQWs for visible light communication. Optics Express, 2022, 30, 18461.	3.4	6
10	Three dimensional truncated-hexagonal-pyramid vertical InGaN-based white light emitting diodes based on β-Ga ₂ O ₃ . Optics Letters, 2022, 47, 3299.	3.3	2
11	The Optical Properties of InGaN/GaN Nanorods Fabricated on (-201) β-Ga2O3 Substrate for Vertical Light Emitting Diodes. Photonics, 2021, 8, 42.	2.0	2
12	Grapheneâ€Nanorod Enhanced Quasiâ€Van Der Waals Epitaxy for High Indium Composition Nitride Films. Small, 2021, 17, e2100098.	10.0	12
13	Role of energy-band offset in photo-electrochemical etching mechanism of p-GaN heterostructures. Journal of Applied Physics, 2021, 129, 165701.	2.5	4
14	Ridge-channel AlGaN/GaN normally-off high-electron mobility transistor based on epitaxial lateral overgrowth. Semiconductor Science and Technology, 2021, 36, 075003.	2.0	0
15	Experimental Optical Properties of Single-Photon Emitters in Aluminum Nitride Films. Journal of Physical Chemistry C, 2021, 125, 11043-11047.	3.1	9
16	Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Science Advances, 2021, 7, .	10.3	35
17	Ultraviolet communication technique and its application. Journal of Semiconductors, 2021, 42, 081801.	3.7	34
18	Transfer-free graphene-guided high-quality epitaxy of AlN film for deep ultraviolet light-emitting diodes. Journal of Applied Physics, 2021, 130, .	2.5	5

TONGBO WEI

#	Article	IF	CITATIONS
19	Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy, 2020, 69, 104463.	16.0	48
20	Nanopatterned Graphene: Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070209.	14.9	1
21	GaN-Based LEDs Grown on Graphene-Covered SiO2/Si (100) Substrate. Crystals, 2020, 10, 787.	2.2	5
22	Graphene-induced crystal-healing of AlN film by thermal annealing for deep ultraviolet light-emitting diodes. Applied Physics Letters, 2020, 117, .	3.3	9
23	Freestanding GaN substrate enabled by dual-stack multilayer graphene via hydride vapor phase epitaxy. Applied Surface Science, 2020, 526, 146747.	6.1	5
24	Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001483.	14.9	27
25	(100)-Oriented gallium oxide substrate for metal organic vapor phase epitaxy for ultraviolet emission. CrystEngComm, 2020, 22, 3122-3129.	2.6	4
26	Quasiâ€2D Growth of Aluminum Nitride Film on Graphene for Boosting Deep Ultraviolet Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001272.	11.2	37
27	Rectification behavior of polarization effect induced type-II n-GaN/n-type β-Ga2O3 isotype heterojunction grown by metal organic vapor phase epitaxy. Journal of Applied Physics, 2020, 127, .	2.5	9
28	Flexible graphene-assisted van der Waals epitaxy growth of crack-free AlN epilayer on SiC by lattice engineering. Applied Surface Science, 2020, 520, 146358.	6.1	14
29	The Optical Properties of Dual-Wavelength InxGa1â^'xN/GaN Nanorods for Wide-Spectrum Light-Emitting Diodes. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.8	2
30	GaN/AlN quantum-disk nanorod 280 nm deep ultraviolet light emitting diodes by molecular beam epitaxy. Optics Letters, 2020, 45, 121.	3.3	30
31	Graphene-Assisted Quasi-van der Waals Epitaxy of AlN Film on Nano-Patterned Sapphire Substrate for Ultraviolet Light Emitting Diodes. Journal of Visualized Experiments, 2020, , .	0.3	2
32	Localized exciton emission in CsPbBr ₃ nanocrystals synthesized with excess bromide ions. Journal of Materials Chemistry C, 2019, 7, 10783-10788.	5.5	8
33	UV Lightâ€Emitting Diodes: Enhancement of Heat Dissipation in Ultraviolet Lightâ€Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer (Adv. Mater. 29/2019). Advanced Materials, 2019, 31, 1970211.	21.0	2
34	High quality GaN epitaxial growth on β-Ga2O3 substrate enabled by self-assembled SiO2 nanospheres. Journal of Crystal Growth, 2019, 525, 125211.	1.5	3
35	Enhancement of Heat Dissipation in Ultraviolet Lightâ€Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer. Advanced Materials, 2019, 31, e1901624.	21.0	72
36	Epitaxy of III-Nitrides on β-Ga2O3 and Its Vertical Structure LEDs. Micromachines, 2019, 10, 322.	2.9	25

TONGBO WEI

#	Article	IF	CITATIONS
37	Phosphor-Free Three-Dimensional Hybrid White LED With High Color-Rendering Index. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	7
38	Improved Epitaxy of AlN Film for Deepâ€Ultraviolet Lightâ€Emitting Diodes Enabled by Graphene. Advanced Materials, 2019, 31, e1807345.	21.0	116
39	Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Applied Physics Letters, 2019, 114, .	3.3	76
40	Interplay between various active regions and the interband transition for AlGaN-based deep-ultraviolet light-emitting diodes to enable a reduced TM-polarized emission. Journal of Applied Physics, 2019, 126, 245702.	2.5	9
41	High-performance nanoporous-GaN metal-insulator-semiconductor ultraviolet photodetectors with a thermal oxidized β-Ga ₂ O ₃ layer. Optics Letters, 2019, 44, 2197.	3.3	22
42	Crystallographic orientation control and optical properties of GaN nanowires. RSC Advances, 2018, 8, 2181-2187.	3.6	21
43	Direct Growth of AlGaN Nanorod LEDs on Graphene-Covered Si. Materials, 2018, 11, 2372.	2.9	14
44	Implementation of slow and smooth etching of GaN by inductively coupled plasma. Journal of Semiconductors, 2018, 39, 113002.	3.7	8
45	Direct van der Waals Epitaxy of Crack-Free AlN Thin Film on Epitaxial WS2. Materials, 2018, 11, 2464.	2.9	17
46	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. Journal of the American Chemical Society, 2018, 140, 11935-11941.	13.7	75
47	Direct Growth of 5 in. Uniform Hexagonal Boron Nitride on Glass for Highâ€Performance Deepâ€Ultraviolet Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2018, 5, 1800662.	3.7	18
48	Investigation of pattern-orientation on stress in GaN grown on Si(111) substrate in lateral confinement epitaxy. Superlattices and Microstructures, 2018, 122, 336-342.	3.1	3
49	Multicolored-light emission from InGaN/GaN multiple quantum wells grown by selective-area epitaxy on patterned Si(100) substrates. Journal of Materials Science, 2018, 53, 16439-16446.	3.7	3
50	Highâ€Brightness Blue Lightâ€Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer. Advanced Materials, 2018, 30, e1801608.	21.0	87
51	High-quality semipolar \$(10ar{1}ar{3})\$ GaN grown on carbon nanotube-patterned sapphire by hydride vapor phase epitaxy. Japanese Journal of Applied Physics, 2018, 57, 125505.	1.5	2
52	Van der Waals epitaxy of GaN-based light-emitting diodes on wet-transferred multilayer graphene film. Japanese Journal of Applied Physics, 2017, 56, 085506.	1.5	23
53	Growth mechanism of AlN on hexagonal BN/sapphire substrate by metal–organic chemical vapor deposition. CrystEngComm, 2017, 19, 5849-5856.	2.6	30
54	Influence of lateral growth on the optical properties of GaN nanowires grown by hydride vapor phase epitaxy. Journal of Applied Physics, 2017, 122, 205302.	2.5	11

Τονςβο Wei

#	Article	IF	CITATIONS
55	Graphene-assisted growth of high-quality AlN by metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 2016, 55, 085501.	1.5	20
56	Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy. Scientific Reports, 2016, 6, 28620.	3.3	11
57	Tailoring of Energy Band in Electron-Blocking Structure Enhancing the Efficiency of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	18
58	Recent advancement on micro-/nano-spherical lens photolithography based on monolayer colloidal crystals. Advances in Colloid and Interface Science, 2016, 228, 105-122.	14.7	53
59	Super-aligned carbon nanotubes patterned sapphire substrate to improve quantum efficiency of InGaN/GaN light-emitting diodes. Optics Express, 2015, 23, A957.	3.4	10
60	Phosphor-free InGaN micro-pyramid white light emitting diodes with multilayer graphene electrode. RSC Advances, 2015, 5, 100646-100650.	3.6	10
61	Efficiency improvement and droop behavior in nanospherical-lens lithographically patterned bottom and top photonic crystal InGaN/GaN light-emitting diodes. Optics Letters, 2014, 39, 379.	3.3	31
62	Efficiency enhancement of homoepitaxial InGaN/GaN light-emitting diodes on free-standing GaN substrate with double embedded SiO_2 photonic crystals. Optics Express, 2014, 22, A1093.	3.4	37
63	Nanospherical-lens lithographical Ag nanodisk arrays embedded in <i>p</i> -GaN for localized surface plasmon-enhanced blue light emitting diodes. AIP Advances, 2014, 4, .	1.3	8
64	The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing. AIP Advances, 2014, 4, .	1.3	12
65	Fabrication and optical characteristics of phosphor-free InGaN nanopyramid white light emitting diodes by nanospherical-lens photolithography. Journal of Applied Physics, 2014, 115, 123101.	2.5	34
66	AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. Journal of Crystal Growth, 2014, 395, 9-13.	1.5	68
67	Efficiency improvement of InGaN light emitting diodes with embedded self-assembled SiO2 nanosphere arrays. Journal of Crystal Growth, 2014, 394, 7-10.	1.5	6
68	Hydride vapor phase epitaxy of high quality {101Ì,,3Ì,,} semipolar GaN on m-plane sapphire coated with self-assembled SiO2 nanospheres. Journal of Crystal Growth, 2014, 387, 101-105.	1.5	3
69	Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography. Applied Physics Letters, 2014, 105, 013108.	3.3	27
70	Phosphor-free nanopyramid white light-emitting diodes grown on {101Â ⁻ 1} planes using nanospherical-lens photolithography. Applied Physics Letters, 2013, 103, .	3.3	20
71	Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Optics Express, 2013, 21, 25373.	3.4	22
72	Enhanced light extraction of InGaN LEDs with photonic crystals grown on p-GaN using selective-area epitaxy and nanospherical-lens photolithography. Journal of Semiconductors, 2013, 34, 104005.	3.7	5

Τονςβο Wei

#	Article	IF	CITATIONS
73	282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Applied Physics Letters, 2013, 102, .	3.3	184
74	Enhanced Light Emission of Light-Emitting Diodes with Silicon Oxide Nanobowls Photonic Crystal without Electrical Performance Damages. Japanese Journal of Applied Physics, 2013, 52, 040207.	1.5	4
75	Light extraction efficiency improvement by multiple laser stealth dicing in InGaN-based blue light-emitting diodes. Optics Express, 2012, 20, 6808.	3.4	41
76	Enhancement in the Light Output Power of GaN-Based Light-Emitting Diodes with Nanotextured Indium Tin Oxide Layer Using Self-Assembled Cesium Chloride Nanospheres. Japanese Journal of Applied Physics, 2012, 51, 020204.	1.5	1
77	Thermal annealing of colloidal monolayer at the air/water interface: a facile approach to transferrable colloidal masks with tunable interstice size for nanosphere lithography. Journal of Materials Chemistry, 2012, 22, 22678.	6.7	42
78	Selectively grown photonic crystal structures for high efficiency InGaN emitting diodes using nanospherical-lens lithography. Applied Physics Letters, 2012, 101, .	3.3	50
79	Enhancement in the Light Output Power of GaN-Based Light-Emitting Diodes with Nanotextured Indium Tin Oxide Layer Using Self-Assembled Cesium Chloride Nanospheres. Japanese Journal of Applied Physics, 2012, 51, 020204.	1.5	7
80	Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands. Optics Express, 2011, 19, 1065.	3.4	40
81	Catalytic Activation of Mg-Doped GaN by Hydrogen Desorption Using Different Metal Thin Layers. Japanese Journal of Applied Physics, 2010, 49, 100201.	1.5	6
82	Microstructure and Optical Properties of Nonpolar m-Plane GaN Films Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2008, 47, 3346.	1.5	36