
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3103532/publications.pdf Version: 2024-02-01

Номс-Ілм 7ни

#	Article	IF	CITATIONS
1	Crystal Structure of a Truncated Epidermal Growth Factor Receptor Extracellular Domain Bound to Transforming Growth Factor α. Cell, 2002, 110, 763-773.	13.5	686
2	Extracellular vesicle isolation and characterization: toward clinical application. Journal of Clinical Investigation, 2016, 126, 1152-1162.	3.9	667
3	Inhibition of Renal Fibrosis by Gene Transfer of Inducible Smad7 Using Ultrasound-Microbubble System in Rat UUO Model. Journal of the American Society of Nephrology: JASN, 2003, 14, 1535-1548.	3.0	334
4	Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 2013, 13, 1672-1686.	1.3	296
5	Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-β signaling. Nature Medicine, 2005, 11, 845-852.	15.2	284
6	<i>SMAD2</i> , <i>SMAD3</i> and <i>SMAD4</i> Mutations in Colorectal Cancer. Cancer Research, 2013, 73, 725-735.	0.4	260
7	Advanced glycation end products activate Smad signaling via TGFâ€Î²â€dependent and â€independent mechanisms: implications for diabetic renal and vascular disease. FASEB Journal, 2004, 18, 176-178.	0.2	241
8	Smad7 Inhibits Fibrotic Effect of TGF-β on Renal Tubular Epithelial Cells by Blocking Smad2 Activation. Journal of the American Society of Nephrology: JASN, 2002, 13, 1464-1472.	3.0	231
9	Heart and Liver Defects and Reduced Transforming Growth Factor β2 Sensitivity in Transforming Growth Factor β Type III Receptor-Deficient Embryos. Molecular and Cellular Biology, 2003, 23, 4371-4385.	1.1	230
10	Emerging roles of exosomes during epithelial–mesenchymal transition and cancer progression. Seminars in Cell and Developmental Biology, 2015, 40, 60-71.	2.3	190
11	Isolation and Characterization of Tumor Cells from the Ascites of Ovarian Cancer Patients: Molecular Phenotype of Chemoresistant Ovarian Tumors. PLoS ONE, 2012, 7, e46858.	1.1	188
12	Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular Cancer, 2013, 12, 24.	7.9	179
13	Oncogenic H-Ras Reprograms Madin-Darby Canine Kidney (MDCK) Cell-derived Exosomal Proteins Following Epithelial-Mesenchymal Transition. Molecular and Cellular Proteomics, 2013, 12, 2148-2159.	2.5	167
14	Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nature Communications, 2014, 5, 3388.	5.8	156
15	TGF-β induces proangiogenic and antiangiogenic factorsvia parallel but distinct Smad pathways1. Kidney International, 2004, 66, 605-613.	2.6	140
16	Role of TGF-Î ² signaling in extracellular matrix production under high glucose conditions. Kidney International, 2003, 63, 2010-2019.	2.6	138
17	Genetic partitioning of interleukinâ€6 signalling in mice dissociates Stat3 from Smad3â€mediated lung fibrosis. EMBO Molecular Medicine, 2012, 4, 939-951.	3.3	128
18	On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges?. Frontiers in Cell and Developmental Biology, 2020, 8, 605.	1.8	127

#	Article	IF	CITATIONS
19	Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 2021, 20, 154.	7.9	116
20	The emergent role of exosomes in glioma. Journal of Clinical Neuroscience, 2017, 35, 13-23.	0.8	115
21	Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer, 2014, 14, 317.	1.1	105
22	Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis. Clinical Cancer Research, 2020, 26, 1460-1473.	3.2	92
23	Regulation and Function of Protein Kinases and Phosphatases. Enzyme Research, 2011, 2011, 1-3.	1.8	89
24	Regulation of Transforming Growth Factor-Î ² Signaling. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2001, 4, 321-330.	1.7	88
25	Smad7 Differentially Regulates Transforming Growth Factor β-mediated Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 32258-32264.	1.6	83
26	Extracellular vesicles: their role in cancer biology and epithelial–mesenchymal transition. Biochemical Journal, 2017, 474, 21-45.	1.7	81
27	The tumor-specific de2–7 epidermal growth factor receptor (EGFR) promotes cells survival and heterodimerizes with the wild-type EGFR. Oncogene, 2004, 23, 6095-6104.	2.6	80
28	TCPTP Regulates SFK and STAT3 Signaling and Is Lost in Triple-Negative Breast Cancers. Molecular and Cellular Biology, 2013, 33, 557-570.	1.1	80
29	CR1/CR2 Interactions Modulate the Functions of the Cell Surface Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2004, 279, 22387-22398.	1.6	75
30	Targeting Stat3 and Smad7 to restore TGF-Î ² cytostatic regulation of tumor cells in vitro and in vivo. Oncogene, 2013, 32, 2433-2441.	2.6	72
31	Secretome-Based Proteomic Profiling of Ras-Transformed MDCK Cells Reveals Extracellular Modulators of Epithelial-Mesenchymal Transition. Journal of Proteome Research, 2009, 8, 2827-2837.	1.8	66
32	YBX1/YB-1 induces partial EMT and tumourigenicity through secretion of angiogenic factors into the extracellular microenvironment. Oncotarget, 2015, 6, 13718-13730.	0.8	66
33	Difference gel electrophoresis analysis of Rasâ€transformed fibroblast cellâ€derived exosomes. Electrophoresis, 2008, 29, 2660-2671.	1.3	62
34	The immune suppressive function of transforming growth factor- β (TGF- β) in human diseases. Growth Factors, 2015, 33, 92-101.	0.5	61
35	Role of ERK1/2 and p38 Mitogen-Activated Protein Kinases in the Regulation of Thrombospondin-1 by TGF-Î ² 1 in Rat Proximal Tubular Cells and Mouse Fibroblasts. Journal of the American Society of Nephrology: JASN, 2005, 16, 899-904.	3.0	60
36	Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget, 2016, 7, 19709-19722.	0.8	56

#	Article	IF	CITATIONS
37	Extracellular Remodelling During Oncogenic Ras-Induced Epithelial-Mesenchymal Transition Facilitates MDCK Cell Migration. Journal of Proteome Research, 2010, 9, 1007-1019.	1.8	54
38	A Novel Non-catalytic Mechanism Employed by the C-terminal Src-homologous Kinase to Inhibit Src-family Kinase Activity. Journal of Biological Chemistry, 2004, 279, 20752-20766.	1.6	52
39	Proteomics Profiling of Madin-Darby Canine Kidney Plasma Membranes Reveals Wnt-5a Involvement during Oncogenic H-Ras/TGF-β-mediated Epithelial-Mesenchymal Transition. Molecular and Cellular Proteomics, 2011, 10, S1-S15.	2.5	47
40	Platelet-derived Growth Factor Requires Epidermal Growth Factor Receptor to Activate p21-activated Kinase Family Kinases. Journal of Biological Chemistry, 2001, 276, 26741-26744.	1.6	45
41	Epidermal Growth Factor Receptor: Association of Extracellular Domain Negatively Regulates Intracellular Kinase Activation in the Absence of Ligand. Growth Factors, 2003, 21, 15-30.	0.5	41
42	A Pivotal Role for the Transmembrane Domain in Transforming Growth Factor-Î ² Receptor Activation. Journal of Biological Chemistry, 1999, 274, 11773-11781.	1.6	38
43	Transforming growth factor-beta (TGF-β) and brain tumours. Journal of Clinical Neuroscience, 2008, 15, 845-855.	0.8	36
44	Signal therapy of human pancreatic cancer and NF1-deficient breast cancer xenograft in mice by a combination of PP1 and GL-2003, anti-PAK1 drugs (Tyr-kinase inhibitors). Cancer Letters, 2007, 245, 242-251.	3.2	35
45	SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-Î ² Signaling Pathway Targeting the Type II Receptor. Journal of Biological Chemistry, 2015, 290, 17894-17908.	1.6	32
46	PTEN catalysis of phospholipid dephosphorylation reaction follows a two-step mechanism in which the conserved aspartate-92 does not function as the general acid — Mechanistic analysis of a familial Cowden disease-associated PTEN mutation. Cellular Signalling, 2007, 19, 1434-1445.	1.7	30
47	Lactacystin-induced apoptosis of cultured mouse cortical neurons is associated with accumulation of PTEN in the detergent-resistant membrane fraction. Cellular and Molecular Life Sciences, 2004, 61, 1926-1934.	2.4	29
48	Anti-EGFR therapeutic efficacy correlates directly with inhibition of STAT3 activity. Cancer Biology and Therapy, 2014, 15, 623-632.	1.5	27
49	Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis. Scientific Reports, 2016, 6, 28321.	1.6	26
50	Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-β in diabetic nephropathy. Kidney International, 2011, 79, 199-209.	2.6	25
51	Petchiether A attenuates obstructive nephropathy by suppressing TGFâ€Î²/Smad3 and NFâ€ÎºB signalling. Journal of Cellular and Molecular Medicine, 2019, 23, 5576-5587.	1.6	25
52	Retrograde, Antegrade, and Laparoscopic Approaches to the Management of Large Upper Ureteral Stones After Shockwave Lithotripsy Failure: A Four-Year Retrospective Study. Journal of Endourology, 2014, 28, 100-103.	1.1	24
53	Extracellular Domain of the Transforming Growth Factor-Î ² Receptor Negatively Regulates Ligand-independent Receptor Activation. Journal of Biological Chemistry, 1999, 274, 29220-29227.	1.6	23
54	Analysis of Ras-induced oncogenic transformation of NIH-3T3 cells using differential-display 2-DE proteomics. Electrophoresis, 2007, 28, 1997-2008.	1.3	22

#	Article	IF	CITATIONS
55	Unique biochemical properties of the protein tyrosine phosphatase activity of PTEN—Demonstration of different active site structural requirements for phosphopeptide and phospholipid phosphatase activities of PTEN. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1785-1795.	1.1	20
56	Betaglycan blocks metastatic behaviors in human granulosa cell tumors by suppressing NFκB-mediated induction of MMP2. Cancer Letters, 2014, 354, 107-114.	3.2	20
57	Laparoscopic Pyeloplasty: A Comparison between the Transperitoneal and Retroperitoneal Approach during the Learning Curve. Urologia Internationalis, 2013, 90, 130-135.	0.6	18
58	Single live cell TGF-Î ² signalling imaging: breast cancer cell motility and migration is driven by sub-populations of cells with dynamic TGF-Î ² -Smad3 activity. Molecular Cancer, 2015, 14, 50.	7.9	18
59	Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching. BMC Systems Biology, 2017, 11, 48.	3.0	18
60	Perturbation of the CD4 T Cell Compartment and Expansion of Regulatory T Cells in Autoimmune-Prone Lyn-Deficient Mice. Journal of Immunology, 2009, 183, 2484-2494.	0.4	17
61	Reactivation of BMP signaling by suboptimal concentrations of MEK inhibitor and FK506 reduces organ-specific breast cancer metastasis. Cancer Letters, 2020, 493, 41-54.	3.2	17
62	Defining the Substrate Specificity Determinants Recognized by the Active Site of C-Terminal Src Kinase-Homologous Kinase (CHK) and Identification of β-Synuclein as a Potential CHK Physiological Substrate. Biochemistry, 2011, 50, 6667-6677.	1.2	16
63	New reagents for improved <i>in vitro</i> and <i>in vivo</i> examination of TGF-1² signalling. Growth Factors, 2011, 29, 211-218.	0.5	15
64	Ponatinib Inhibits Multiple Signaling Pathways Involved in STAT3 Signaling and Attenuates Colorectal Tumor Growth. Cancers, 2018, 10, 526.	1.7	15
65	Ras enhances TGF-β signaling by decreasing cellular protein levels of its type II receptor negative regulator SPSB1. Cell Communication and Signaling, 2018, 16, 10.	2.7	14
66	CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation. Oncogene, 2021, 40, 3015-3029.	2.6	13
67	Tandem application of cationic colloidal silica and Triton Xâ€114 for plasma membrane protein isolation and purification: Towards developing an MDCK protein database. Proteomics, 2011, 11, 1238-1253.	1.3	12
68	Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Communication and Signaling, 2017, 15, 29.	2.7	10
69	Dynamin II function is required for EGF-mediated Stat3 activation but not Erk1/2 phosphorylation. Growth Factors, 2012, 30, 220-229.	0.5	9
70	The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate. Archives of Biochemistry and Biophysics, 2015, 587, 48-60.	1.4	8
71	TGF-Î ² and IL-6 family signalling crosstalk: an integrated model. Growth Factors, 2017, 35, 100-124.	0.5	7
72	Therapeutic Reversal of Radiotherapy Injury to Pro-fibrotic Dysfunctional Fibroblasts In Vitro Using Adipose-derived Stem Cells. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e2706.	0.3	6

#	Article	IF	CITATIONS
73	Live Cell Imaging of the TGF- β/Smad3 Signaling Pathway In Vitro and In Vivo Using an Adenovirus Reporter System. Journal of Visualized Experiments, 2018, , .	0.2	5
74	Transglutaminaseâ€2, RNAâ€binding proteins and mitochondrial proteins selectively traffic to MDCK cellâ€derived microvesicles following Hâ€Rasâ€induced epithelial–mesenchymal transition. Proteomics, 2021, 21, 2000221.	1.3	5
75	Expression, generation, and purification of unphosphorylated and phospho-Ser-380/Thr-382/Thr-383 form of recombinant PTEN phosphatase. Protein Expression and Purification, 2007, 55, 334-342.	0.6	4
76	Ureteroscopic treatment of urological calculi under sacral block anesthesia. Urological Research, 2012, 40, 361-363.	1.5	4
77	USP26 regulates TGFâ€Î² signalling by deubiquitinating and stabilizing SMAD7; not applicable in glioblastoma. EMBO Reports, 2020, 21, e47030.	2.0	4
78	Fast Quantitation of TGF-β Signaling Using Adenoviral Reporter. Methods in Molecular Biology, 2022, 2488, 13-22.	0.4	4
79	Tumor-associated EGFR over-expression specifically activates Stat3 and Smad7 resulting in desensitization of TGF-12 signaling. Nature Precedings, 2008	0.1	2