In Seop Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of carbon monoxide dehydrogenase orientation by site-specific immobilization enables direct electrical contact between enzyme cofactor and solid surface. Communications Biology, 2022, 5, 390.	4.4	6
2	Direct electrical contact of NAD+/NADH-dependent dehydrogenase on electrode surface enabled by non-native solid-binding peptide as a molecular binder. Electrochimica Acta, 2022, 421, 140480.	5.2	2
3	Protocol for construction and characterization of direct electron transfer-based enzyme-electrode using gold binding peptide as molecular binder. STAR Protocols, 2022, 3, 101466.	1.2	0
4	Microbial fuel cell driven mineral rich wastewater treatment process for circular economy by creating virtuous cycles. Bioresource Technology, 2021, 320, 124254.	9.6	14
5	Methanol supply speeds up synthesis gas fermentation by methylotrophic-acetogenic bacterium, Eubacterium limosum KIST612. Bioresource Technology, 2021, 321, 124521.	9.6	20
6	Accurate measurement of internal resistance in microbial fuel cells by improved scanning electrochemical impedance spectroscopy. Electrochimica Acta, 2021, 366, 137388.	5.2	35
7	High performance acid–base junction flow batteries using an asymmetric bipolar membrane with an ion-channel aligned anion exchange layer. Journal of Materials Chemistry A, 2021, 9, 7955-7966.	10.3	6
8	Microbial fuel cells: Current trends and emerging applications. Bioresource Technology, 2021, 324, 124687.	9.6	6
9	Emerging trends in microbial fuel cell diversification-Critical analysis. Bioresource Technology, 2021, 326, 124676.	9.6	30
10	Functional Expression of a Mo–Cu-Dependent Carbon Monoxide Dehydrogenase (CODH) and Its Use as a Dissolved CO Bio-microsensor. ACS Sensors, 2021, 6, 2772-2782.	7.8	5
11	Metabolism perturbation Caused by the overexpression of carbon monoxide dehydrogenase/Acetyl-CoA synthase gene complex accelerated gas to acetate conversion rate ofEubacterium limosumKIST612. Bioresource Technology, 2021, 341, 125879.	9.6	15
12	Peptide sequence-driven direct electron transfer properties and binding behaviors of gold-binding peptide-fused glucose dehydrogenase on electrode. IScience, 2021, 24, 103373.	4.1	5
13	Dissolved carbon monoxide concentration monitoring platform based on direct electrical connection of CO dehydrogenase with electrically accessible surface structure. Bioresource Technology, 2020, 297, 122436.	9.6	6
14	A simultaneous gas feeding and cell-recycled reaction (SGCR) system to achieve biomass boosting and high acetate titer in microbial carbon monoxide fermentation. Bioresource Technology, 2020, 298, 122549.	9.6	9
15	Determination of optimum electrical connection mode for multi-electrode-embedded microbial fuel cells coupled with anaerobic digester for enhancement of swine wastewater treatment efficiency and energy recovery. Bioresource Technology, 2020, 297, 122464.	9.6	24
16	Structural heterogeneity yet high similarity of the microbial community on reverse osmosis membrane-driven biofilms during seawater desalination. Environmental Science: Water Research and Technology, 2020, 6, 3066-3079.	2.4	4
17	Behavior of CO-water mass transfer coefficient in membrane sparger-integrated bubble column for synthesis gas fermentation. Bioresource Technology, 2020, 311, 123594.	9.6	8
18	Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide. Biosensors and Bioelectronics, 2020, 165, 112427.	10.1	21

#	Article	IF	CITATIONS
19	Controlling Voltage Reversal in Microbial Fuel Cells. Trends in Biotechnology, 2020, 38, 667-678.	9.3	70
20	Gas circulation rate and medium exchange ratio as influential factors affecting ethanol production in carbon monoxide fermentation using a packed-bed reactor. Sustainable Energy and Fuels, 2020, 4, 1963-1973.	4.9	3
21	Genetic engineering system for syngas-utilizing acetogen, Eubacterium limosum KIST612. Bioresource Technology Reports, 2020, 11, 100452.	2.7	17
22	On Creating Multimedia Interfaces for Hybrid Biological-Digital Art Installations. Lecture Notes in Computer Science, 2020, , 139-150.	1.3	0
23	Syngas Fermentation Into Biofuels and Biochemicals. , 2019, , 301-327.		9
24	Electrocatalytic and Biosensing Properties of Aerobic Carbon Monoxide Dehydrogenase from Hydrogenophaga Pseudoflava Immobilized on Au Electrode towards Carbon Monoxide Oxidation. Electroanalysis, 2019, 31, 1635-1640.	2.9	5
25	Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process. Bioresource Technology Reports, 2019, 7, 100207.	2.7	23
26	Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renewable and Sustainable Energy Reviews, 2019, 105, 427-443.	16.4	94
27	Gene entric Metagenome Analysis Reveals Gene Clusters for Carbon Monoxide Conversion and Validates Isolation of a Clostridial Acetogen for C2 Chemical Production. Biotechnology Journal, 2019, 14, 1800471.	3.5	3
28	Significant enhancement of direct electric communication across enzyme-electrode interface via nano-patterning of synthetic glucose dehydrogenase on spatially tunable gold nanoparticle (AuNP)-modified electrode. Biosensors and Bioelectronics, 2019, 126, 170-177.	10.1	14
29	Tracking of Shewanella oneidensis MR-1 biofilm formation of a microbial electrochemical system via differential pulse voltammetry. Bioresource Technology, 2018, 254, 357-361.	9.6	23
30	Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochimica Acta, 2018, 259, 365-376.	5.2	58
31	Comparative study of the airborne microbial communities and their functional composition in fine particulate matter (PM2.5) under non-extreme and extreme PM2.5 conditions. Atmospheric Environment, 2018, 194, 82-92.	4.1	46
32	Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol. Bioresource Technology, 2018, 263, 375-384.	9.6	29
33	Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer. ACS Applied Materials & Interfaces, 2018, 10, 28615-28626.	8.0	32
34	Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFCs) stacking system by resistor control. Bioresource Technology, 2018, 262, 338-341.	9.6	26
35	Determination of volumetric gas–liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations. Bioresource Technology, 2017, 239, 387-393.	9.6	10
36	Serially Connectable Sediment Microbial Fuel Cells using Dipole Graphite Solids and Voltage Reversal Suppression. Energy Technology, 2017, 5, 1946-1952.	3.8	6

#	Article	IF	CITATIONS
37	Acetate-assisted increase of butyrate production by Eubacterium limosum KIST612 during carbon monoxide fermentation. Bioresource Technology, 2017, 245, 560-566.	9.6	36
38	Self-recoverable voltage reversal in stacked microbial fuel cells due to biofilm capacitance. Bioresource Technology, 2017, 245, 1286-1289.	9.6	17
39	Elimination of Power Overshoot at Bioanode through Assistance Current in Microbial Fuel Cells. ChemSusChem, 2017, 10, 612-617.	6.8	34
40	Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode. Daehan Hwan'gyeong Gonghag Hoeji, 2017, 39, 591-598.	1,1	7
41	Significance of maximum current for voltage boosting of microbial fuel cells in series. Journal of Power Sources, 2016, 323, 23-28.	7.8	17
42	pH-dependent ammonia removal pathways in microbial fuel cell system. Bioresource Technology, 2016, 215, 290-295.	9.6	46
43	Adhesion potential of bacteria retrieved from intake seawater and membrane biofilms on full-scale reverse osmosis desalination process. Desalination and Water Treatment, 2016, 57, 26629-26640.	1.0	1
44	Proof-of-concept experiments of an acid-base junction flow battery by reverse bipolar electrodialysis for an energy conversion system. Electrochemistry Communications, 2016, 72, 157-161.	4.7	29
45	Correlation of Overvoltages and Current Densities to Estimate Optimal Electrode Size for Sediment Microbial Fuel Cells. Energy Technology, 2016, 4, 369-374.	3.8	1
46	Concurrent Control of Power Overshoot and Voltage Reversal with Series Connection of Parallel onnected Microbial Fuel Cells. Energy Technology, 2016, 4, 729-736.	3.8	18
47	Intrinsic kinetic parameters of Thermococcus onnurineus NA1 strains and prediction of optimum carbon monoxide level for ideal bioreactor operation. Bioresource Technology, 2016, 201, 74-79.	9.6	13
48	Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation. Journal of Industrial and Engineering Chemistry, 2016, 39, 149-152.	5.8	14
49	Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells. Bioresource Technology, 2016, 213, 140-145.	9.6	37
50	Enhanced mass transfer rate of methane in aqueous phase via methyl-functionalized SBA-15. Journal of Molecular Liquids, 2016, 215, 154-160.	4.9	17
51	Assistance Current Effect for Prevention of Voltage Reversal in Stacked Microbial Fuel Cell Systems. ChemElectroChem, 2015, 2, 755-760.	3.4	33
52	Shift of voltage reversal in stacked microbial fuel cells. Journal of Power Sources, 2015, 278, 534-539.	7.8	53
53	Functionalized Polyacrylonitrile Nanofibrous Membranes for Covalent Immobilization of Glucose Oxidase. Journal of Biomedical Nanotechnology, 2015, 11, 143-149.	1.1	5
54	Graphitized-Carbon-Nanofiber Paper-Enzyme Electrode Fabrication Through Non-Covalent Modification for Enzyme Biofuel Cell Application. Journal of Biomedical Nanotechnology, 2015, 11, 137-142.	1.1	2

#	Article	IF	CITATIONS
55	Gas-liquid mass transfer coefficient of methane in bubble column reactor. Korean Journal of Chemical Engineering, 2015, 32, 1060-1063.	2.7	25
56	Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: From nano- to macro scopes. Bioresource Technology, 2015, 195, 2-13.	9.6	33
57	Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery. Bioresource Technology, 2015, 195, 217-222.	9.6	76
58	Energy Conservation Model Based on Genomic and Experimental Analyses of a Carbon Monoxide-Utilizing, Butyrate-Forming Acetogen, Eubacterium limosum KIST612. Applied and Environmental Microbiology, 2015, 81, 4782-4790.	3.1	69
59	The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresource Technology, 2015, 190, 395-401.	9.6	69
60	Performance variation according to anode-embedded orientation in a sediment microbial fuel cell employing a chessboard-like hundred-piece anode. Bioresource Technology, 2015, 190, 175-181.	9.6	20
61	Preface. Bioresource Technology, 2015, 195, 1.	9.6	0
62	Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresource Technology, 2015, 177, 361-374.	9.6	91
63	Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment. PLoS ONE, 2015, 10, e0145430.	2.5	15
64	Batch Conversion of Methane to Methanol Using Methylosinus trichosporium OB3b as Biocatalyst. Journal of Microbiology and Biotechnology, 2015, 25, 375-380.	2.1	63
65	Effect of the Application of Microbubbles and/or Catalyst on the Sludge Reduction and Organic matter of Livestock Wastewater. Daehan Hwan'gyeong Gonghag Hoeji, 2015, 37, 558-562.	1.1	4
66	Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication. Materials Research Bulletin, 2014, 58, 213-217.	5.2	9
67	Fluorescence imaging for biofoulants detection and monitoring of biofouled strength in reverse osmosis membrane. Analytical Methods, 2014, 6, 993-1000.	2.7	4
68	Characterization of uncharged and sulfonated porous poly(vinylidene fluoride) membranes and their performance in microbial fuel cells. Journal of Membrane Science, 2014, 463, 205-214.	8.2	55
69	Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Bioresource Technology, 2014, 154, 59-66.	9.6	60
70	Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. Bioresource Technology, 2014, 169, 637-643.	9.6	51
71	Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells. Bioresource Technology, 2014, 169, 265-270.	9.6	15
72	New architecture for modulization of membraneless and single-chambered microbial fuel cell using a bipolar plate-electrode assembly (BEA). Biosensors and Bioelectronics, 2014, 59, 28-34.	10.1	37

#	Article	IF	CITATIONS
73	Immobilisation of Flavinâ€Adenineâ€Dinucleotideâ€Dependent Glucose Dehydrogenase αâ€Subunit in Freeâ€Standing Graphitised Carbon Nanofiber Paper Using a Bifunctional Crossâ€Linker for an Enzymatic Biofuel Cell. ChemElectroChem, 2014, 1, 1844-1848.	3.4	12
74	Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries. Journal of Microbiology and Biotechnology, 2014, 24, 1597-1605.	2.1	67
75	Ammonia Nitrogen Removal and Recovery from Swine Wastewater by Microwave Radiation. Environmental Engineering Research, 2014, 19, 381-385.	2.5	21
76	Current Generation from Microbial Fuel Cell Using Stainless Steel Wire as Anode Electrode. Daehan Hwan'gyeong Gonghag Hoeji, 2014, 36, 753-757.	1.1	7
77	Rapid enrichment of (homo)acetogenic consortia from animal feces using a high mass-transfer gas-lift reactor fed with syngas. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 995-1003.	3.0	26
78	High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions. Physical Chemistry Chemical Physics, 2013, 15, 9508.	2.8	20
79	Voltage increase of microbial fuel cells with multiple membrane electrode assemblies by in series connection. Electrochemistry Communications, 2013, 28, 131-134.	4.7	31
80	Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresource Technology, 2013, 136, 707-710.	9.6	117
81	Use of red algae, Ceylon moss (Gelidium amansii), hydrolyzateÂfor clostridial fermentation. Biomass and Bioenergy, 2013, 56, 38-42.	5.7	18
82	Comparison in performance of sediment microbial fuel cells according to depth of embedded anode. Bioresource Technology, 2013, 127, 138-142.	9.6	75
83	Power Density Enhancement of Anion-Exchange Membrane-Installed Microbial Fuel Cell Under Bicarbonate-Buffered Cathode Condition. Journal of Microbiology and Biotechnology, 2013, 23, 36-39.	2.1	13
84	Microbial Communities of the Microbial Fuel Cell Using Swine Wastewater in the Enrichment Step with the Lapse of Time. Daehan Hwan'gyeong Gonghag Hoeji, 2013, 35, 973-977.	1.1	2
85	Fluorescence spectrum-based biofouling prediction method for RO membrane systems. Desalination and Water Treatment, 2012, 43, 238-245.	1.0	4
86	Treatment of Alcohol Distillery Wastewater Using a Bacteroidetes-Dominant Thermophilic Microbial Fuel Cell. Environmental Science & Technology, 2012, 46, 3022-3030.	10.0	97
87	Exploring microbial communities and differences of cartridge filters (CFs) and reverse osmosis (RO) membranes for seawater desalination processes. Desalination, 2012, 298, 85-92.	8.2	28
88	Scalingâ€Up Microbial Fuel Cells: Configuration and Potential Drop Phenomenon at Series Connection of Unit Cells in Shared Anolyte. ChemSusChem, 2012, 5, 1086-1091.	6.8	76
89	Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells. Biosensors and Bioelectronics, 2012, 31, 164-169.	10.1	11
90	Microbial Carbon Substrate Utilization in Microbial Fuel Cell using Livestock Wastewater. Journal of Korea Society of Waste Management, 2012, 29, 712-719.	0.2	1

#	Article	IF	CITATIONS
91	Complete Genome Sequence of a Carbon Monoxide-Utilizing Acetogen, <i>Eubacterium limosum</i> KIST612. Journal of Bacteriology, 2011, 193, 307-308.	2.2	68
92	Bifunctional Silver Nanoparticle Cathode in Microbial Fuel Cells for Microbial Growth Inhibition with Comparable Oxygen Reduction Reaction Activity. Environmental Science & Technology, 2011, 45, 5441-5446.	10.0	109
93	Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration. Applied Microbiology and Biotechnology, 2011, 89, 259-270.	3.6	113
94	Microbial community differences between propionate-fed microbial fuel cell systems under open and closed circuit conditions. Applied Microbiology and Biotechnology, 2011, 89, 605-612.	3.6	33
95	Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater. Bioresource Technology, 2011, 102, 5841-5848.	9.6	51
96	Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength. Biosensors and Bioelectronics, 2011, 26, 3266-3271.	10.1	37
97	A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresource Technology, 2011, 102, 6291-6294.	9.6	61
98	Complete Genome Sequencing of Lactobacillus acidophilus 30SC, Isolated from Swine Intestine. Journal of Bacteriology, 2011, 193, 2882-2883.	2.2	18
99	Electricity generation coupled to oxidation of propionate in a microbial fuel cell. Biotechnology Letters, 2010, 32, 79-85.	2.2	17
100	Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell. Journal of Environmental Management, 2010, 91, 2478-2482.	7.8	16
101	Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 2010, 35, 13379-13386.	7.1	146
102	Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosensors and Bioelectronics, 2010, 25, 1629-1634.	10.1	83
103	T-RFLP reveals high β-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater. Journal of Applied Microbiology, 2010, 109, 839-850.	3.1	59
104	Multiphase Electrode Microbial Fuel Cell System that Simultaneously Converts Organics Coexisting in Water and Sediment phases into Electricity. Environmental Science & Technology, 2010, 44, 7145-7150.	10.0	16
105	Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system. Photochemical and Photobiological Sciences, 2010, 9, 349-356.	2.9	29
106	Decadal and seasonal scale changes of an artificial lake environment after blocking tidal flows in the Yeongsan Estuary region, Korea. Science of the Total Environment, 2009, 407, 6063-6072.	8.0	31
107	Responses from freshwater sediment during electricity generation using microbial fuel cells. Bioprocess and Biosystems Engineering, 2009, 32, 389-395.	3.4	64
108	Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresource Technology, 2009, 100, 3029-3035.	9.6	130

#	Article	IF	CITATIONS
109	Study of hydrogen production in light assisted microbial electrolysis cell operated with dye sensitized solar cell. International Journal of Hydrogen Energy, 2009, 34, 9297-9304.	7.1	43
110	Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling. Desalination, 2009, 247, 125-136.	8.2	29
111	Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology. Bioresource Technology, 2009, 100, 4527-4530.	9.6	34
112	A Solar-Powered Microbial Electrolysis Cell with a Platinum Catalyst-Free Cathode To Produce Hydrogen. Environmental Science & Technology, 2009, 43, 9525-9530.	10.0	119
113	Floating-Type Microbial Fuel Cell (FT-MFC) for Treating Organic-Contaminated Water. Environmental Science & Technology, 2009, 43, 1642-1647.	10.0	44
114	Performance and Bacterial Consortium of Microbial Fuel Cell Fed with Formate. Energy & Fuels, 2008, 22, 164-168.	5.1	73
115	Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells. Energy & Fuels, 2008, 22, 169-176.	5.1	376
116	Current Production and Metal Oxide Reduction by <i>Shewanella oneidensis</i> MR-1 Wild Type and Mutants. Applied and Environmental Microbiology, 2008, 74, 553-553.	3.1	19
117	Current Production and Metal Oxide Reduction by <i>Shewanella oneidensis</i> MR-1 Wild Type and Mutants. Applied and Environmental Microbiology, 2007, 73, 7003-7012.	3.1	513
118	Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chemosphere, 2007, 68, 218-226.	8.2	57
119	Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology, 2007, 76, 485-494.	3.6	358
120	Use of an industrial grade medium and medium enhancing effects on high cell density CO fermentation by Eubacterium limosum KIST612. Biotechnology Letters, 2007, 29, 1183-1187.	2.2	12
121	Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11358-11363.	7.1	1,629
122	Enrichment, Performance, and Microbial Diversity of a Thermophilic Mediatorless Microbial Fuel Cell. Environmental Science & Technology, 2006, 40, 6449-6454.	10.0	151
123	Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology, 2006, 97, 621-627.	9.6	262
124	Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotechnology and Bioengineering, 2006, 95, 772-774.	3.3	23
125	Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochemical Engineering Journal, 2005, 27, 59-65.	3.6	79
126	Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. Journal of Applied Microbiology, 2005, 99, 978-987.	3.1	67

#	Article	IF	CITATIONS
127	Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosensors and Bioelectronics, 2005, 20, 1856-1859.	10.1	220
128	Differential Expression of Desulfovibrio vulgaris Genes in Response to Cu(II) and Hg(II) Toxicity. Applied and Environmental Microbiology, 2004, 70, 1847-1851.	3.1	18
129	Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiology Letters, 2004, 238, 65-70.	1.8	17
130	Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnology Letters, 2004, 26, 1717-1721.	2.2	105
131	Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiology and Biotechnology, 2004, 63, 672-681.	3.6	392
132	Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors and Bioelectronics, 2004, 19, 607-613.	10.1	359
133	Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 2004, 39, 1007-1012.	3.7	423
134	Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiology Letters, 2004, 233, 77-82.	1.8	170
135	Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiology Letters, 2004, 238, 65-70.	1.8	5
136	A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnology Letters, 2003, 25, 1357-1361.	2.2	99
137	Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 2003, 25, 541-545.	2.2	327
138	A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related toAeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiology Letters, 2003, 223, 129-134.	1.8	381
139	Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiology Letters, 2003, 223, 185-191.	1.8	189
140	Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosensors and Bioelectronics, 2003, 18, 327-334.	10.1	891
141	Evidence for chimeric sequences formed during random arbitrarily primed PCR. Journal of Microbiological Methods, 2003, 54, 427-431.	1.6	4
142	Purification and Characterization of Complement-activating Acidic Polysaccharides from the Fruits of Capsicum annuum. BMB Reports, 2003, 36, 230-236.	2.4	11
143	A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 2002, 30, 145-152.	3.2	815
144	Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612. Process Biochemistry, 2001, 37, 411-421.	3.7	90

#	Article	IF	CITATIONS
145	A Novel Electrochemically Active and Fe(III)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell. Anaerobe, 2001, 7, 297-306.	2.1	485
146	Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Research, 2000, 34, 1269-1277.	11.3	216