KIKUO OKUYAMA

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102671/publications.pdf

Version: 2024-02-01

507 papers

19,995 citations

72 h-index 22832 112 g-index

508 all docs

508 docs citations

508 times ranked 16061 citing authors

#	Article	IF	CITATIONS
1	Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 2011, 22, 1-19.	4.1	596
2	Preparation of nanoparticles via spray route. Chemical Engineering Science, 2003, 58, 537-547.	3.8	550
3	Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 2017, 7, 9894.	3.3	396
4	Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors. Chemistry of Materials, 2007, 19, 1723-1730.	6.7	339
5	Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous and Mesoporous Materials, 2009, 120, 447-453.	4.4	321
6	Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 2003, 265, 296-303.	9.4	293
7	Unipolar and bipolar diffusion charging of ultrafine aerosol particles. Journal of Aerosol Science, 1985, 16, 109-123.	3.8	288
8	Enhanced Photocatalytic Performance of Brookite TiO2 Macroporous Particles Prepared by Spray Drying with Colloidal Templating. Advanced Materials, 2007, 19, 1408-1412.	21.0	255
9	Nanoparticle filtration by electrospun polymer fibers. Chemical Engineering Science, 2007, 62, 4751-4759.	3.8	253
10	Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route. Scientific Reports, 2016, 6, 21042.	3.3	230
11	YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis. Materials Research Bulletin, 2000, 35, 789-798.	5.2	213
12	Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors. AICHE Journal, 1986, 32, 2010-2019.	3.6	195
13	In Situ Production of Spherical Silica Particles Containing Self-Organized Mesopores. Nano Letters, 2001, 1, 231-234.	9.1	182
14	Preparation of functional nanostructured particles by spray drying. Advanced Powder Technology, 2006, 17, 587-611.	4.1	169
15	Facile Synthesis of New Fullâ€Colorâ€Emitting BCNO Phosphors with High Quantum Efficiency. Advanced Materials, 2008, 20, 3235-3238.	21.0	163
16	Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation. Journal of Colloid and Interface Science, 2006, 304, 535-540.	9.4	160
17	PREPARATION OF ZnS NANOPARTICLES BY ELECTROSPRAY PYROLYSIS. Journal of Aerosol Science, 2000, 31, 121-136.	3.8	156
18	Novel Route to Nanoparticle Synthesis by Salt-Assisted Aerosol Decomposition. Advanced Materials, 2001, 13, 1579.	21.0	154

#	Article	IF	Citations
19	Binary nucleation in acid–water systems. II. Sulfuric acid–water and a comparison with methanesulfonic acid–water. Journal of Chemical Physics, 1991, 94, 6842-6850.	3.0	152
20	An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. Journal of Materials Research, 2000, 15, 733-743.	2.6	150
21	Investigation on the Correlations between Droplet and Particle Size Distribution in Ultrasonic Spray Pyrolysis. Industrial & Engineering Chemistry Research, 2008, 47, 1650-1659.	3.7	149
22	Generating Blue and Red Luminescence from ZnO/Poly(ethylene glycol) Nanocomposites Prepared Using an In-Situ Method. Advanced Functional Materials, 2003, 13, 800-804.	14.9	140
23	Scaling law on particle-to-fiber formation during electrospinning. Polymer, 2009, 50, 4935-4943.	3.8	139
24	Gd2O3:Eu phosphor particles with sphericity, submicron size and non-aggregation characteristics. Journal of Physics and Chemistry of Solids, 1999, 60, 379-384.	4.0	138
25	Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Separation and Purification Technology, 2010, 75, 340-345.	7.9	137
26	Sizing of Colloidal Nanoparticles by Electrospray and Differential Mobility Analyzer Methods. Langmuir, 2002, 18, 4584-4591.	3.5	124
27	Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 69-76.	3.5	124
28	Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method. Aerosol Science and Technology, 1995, 23, 183-200.	3.1	122
29	Thermal stability of crystalline thin films. Thin Solid Films, 1998, 312, 357-361.	1.8	114
30	Novel rare-earth-free tunable-color-emitting BCNO phosphors. Journal of Materials Chemistry, 2011, 21, 5183.	6.7	114
31	Photoluminescence characteristics of YAG:Tb phosphor particles with spherical morphology and non-aggregation. Journal of Physics and Chemistry of Solids, 1999, 60, 1855-1858.	4.0	111
32	Direct synthesis of carbon quantum dots in aqueous polymer solution: one-pot reaction and preparation of transparent UV-blocking films. Journal of Materials Chemistry A, 2017, 5, 5187-5194.	10.3	111
33	Evaluation of the change in the morphology of gold nanoparticles during sintering. Journal of Aerosol Science, 2002, 33, 1061-1074.	3.8	109
34	Determination of Particle Size Distribution of Ultra-Fine Aerosols Using a Differential Mobility Analyzer. Aerosol Science and Technology, 1985, 4, 209-225.	3.1	107
35	Surface functionalization for dispersing and stabilizing hexagonal boron nitride nanoparticle by bead milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388, 49-58.	4.7	107
36	Formation of Highly Ordered Nanostructures by Drying Micrometer Colloidal Droplets. ACS Nano, 2010, 4, 4717-4724.	14.6	106

3

#	Article	IF	CITATIONS
37	Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications. Advanced Powder Technology, 2014, 25, 3-17.	4.1	106
38	Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Materials Research Bulletin, 2003, 38, 1819-1827.	5.2	105
39	Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chemical Engineering Science, 2003, 58, 3327-3335.	3.8	105
40	Controllability of Pore Size and Porosity on Self-Organized Porous Silica Particles. Nano Letters, 2002, 2, 389-392.	9.1	104
41	Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 71-78.	4.7	104
42	CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation. Chemical Engineering Journal, 2012, 180, 323-329.	12.7	104
43	Size-dependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits. Materials Science in Semiconductor Processing, 1999, 2, 321-327.	4.0	103
44	Size distribution measurement of nanometer-sized aerosol particles using dma under low-pressure conditions. Journal of Aerosol Science, 1997, 28, 193-206.	3.8	99
45	Effect of Brownian diffusion on electrical classification of ultrafine aerosol particles in differential mobility analyzer Journal of Chemical Engineering of Japan, 1986, 19, 401-407.	0.6	98
46	Filtration efficiency of a fibrous filter for nanoparticles. Journal of Nanoparticle Research, 2006, 8, 215-221.	1.9	94
47	Design of Pyrrolic-N-Rich Carbon Dots with Absorption in the First Near-Infrared Window for Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 2368-2375.	5.0	94
48	High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process. Journal of Alloys and Compounds, 2008, 463, 350-357.	5.5	92
49	Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. Journal of Aerosol Science, 2003, 34, 869-881.	3.8	91
50	Condensational Growth of Ultrafine Aerosol Particles in a New Particle Size Magnifier. Aerosol Science and Technology, 1984, 3, 353-366.	3.1	90
51	Preparation of nonaggregated Y ₂ O ₃ : Eu phosphor particles by spray pyrolysis method. Journal of Materials Research, 1999, 14, 2611-2615.	2.6	90
52	Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3î—,H2 system under atmospheric pressure. Journal of Crystal Growth, 1996, 169, 61-72.	1.5	89
53	Sintering of Polydisperse Nanometer-Sized Agglomerates. Aerosol Science and Technology, 1997, 27, 422-438.	3.1	88
54	Change in size distribution of ultrafine aerosol particles undergoing Brownian coagulation. Journal of Colloid and Interface Science, 1984, 101, 98-109.	9.4	87

#	Article	IF	CITATIONS
55	Luminescence Characteristics of  Y 2SiO5 : Tb Phosphor Particles Directly Prepared by the Spray Method. Journal of the Electrochemical Society, 1999, 146, 1227-1230.	Pyrolysis	87
56	Development of a mixing type condensation nucleus counter. Journal of Aerosol Science, 1982, 13, 231-240.	3.8	86
57	Controlled size polymer particle production via electrohydrodynamic atomization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 67-76.	4.7	85
58	Transient nature of graphene quantum dot formation via a hydrothermal reaction. RSC Advances, 2014, 4, 55709-55715.	3.6	84
59	Condensation of supersaturated vapors on monovalent and divalent ions of varying size. Journal of Chemical Physics, 1997, 107, 1576-1585.	3.0	83
60	Functional Nanostructured Silica Powders Derived from Colloidal Suspensions by Sol Spraying. Journal of Nanoparticle Research, 2001, 3, 263-270.	1.9	83
61	Preparation of high coercivity magnetic FePt nanoparticles by liquid process. Journal of Applied Physics, 2003, 94, 6807-6811.	2.5	83
62	Transient kinetics of nucleation. Physical Review A, 1990, 41, 2101-2108.	2.5	81
63	Synthesis and Photoluminescence of Spherical ZnS:Mn2+Particles. Chemistry of Materials, 2002, 14, 4969-4974.	6.7	81
64	Stable photoluminescence of zinc oxide quantum dots in silica nanoparticles matrix prepared by the combined sol–gel and spray drying method. Journal of Applied Physics, 2001, 89, 6431-6434.	2.5	80
65	Particle loss of aerosols with particle diameters between 6 and 2000 nm in stirred tank. Journal of Colloid and Interface Science, 1986, 110, 214-223.	9.4	79
66	Metal–support interactions in catalysts for environmental remediation. Environmental Science: Nano, 2017, 4, 2076-2092.	4.3	79
67	Highly conductive nano-sized Magnéli phases titanium oxide (TiOx). Scientific Reports, 2017, 7, 3646.	3.3	79
68	One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 123, 194-202.	3.5	77
69	Binary nucleation in acid–water systems. I. Methanesulfonic acid–water. Journal of Chemical Physics, 1991, 94, 6827-6841.	3.0	76
70	Synthesis of CeO2 nanoparticles by salt-assisted ultrasonic aerosol decomposition. Journal of Materials Chemistry, 2001, 11, 2925-2927.	6.7	74
71	Beads Mill-Assisted Synthesis of Poly Methyl Methacrylate (PMMA)-TiO ₂ Nanoparticle Composites. Industrial & Description of Poly Methyl Methacrylate (PMMA)-TiO ₂ Nanoparticle Composites. Industrial & Description of Poly Methyl Methacrylate (PMMA)-TiO ₂	3.7	74
72	Particle generation in a chemical vapor deposition process with seed particles. AICHE Journal, 1990, 36, 409-419.	3.6	73

#	Article	IF	Citations
73	Kinetics of nitrogen-doped carbon dot formation via hydrothermal synthesis. New Journal of Chemistry, 2016, 40, 5555-5561.	2.8	73
74	Synthesis of ZnO/SiO2 nanocomposites emitting specific luminescence colors. Optical Materials, 2004, 26, 95-100.	3.6	71
75	Mesopore-Free Hollow Silica Particles with Controllable Diameter and Shell Thickness via Additive-Free Synthesis. Langmuir, 2012, 28, 8616-8624.	3 . 5	70
76	The crystallinity and the photoluminescent properties of spray pyrolized ZnO phosphor containing Eu2+ and Eu3+ ions. Journal of Physics and Chemistry of Solids, 2004, 65, 1843-1847.	4.0	69
77	Dispersion Stability Enhancement of Titania Nanoparticles in Organic Solvent Using a Bead Mill Process. Industrial & Engineering Chemistry Research, 2009, 48, 6916-6922.	3.7	68
78	Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chemical Engineering Science, 2013, 101, 523-532.	3.8	68
79	Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis. Advanced Powder Technology, 2009, 20, 203-209.	4.1	66
80	Influences of Porous Structurization and Pt Addition on the Improvement of Photocatalytic Performance of WO ₃ Particles. ACS Applied Materials & Interfaces, 2015, 7, 3009-3017.	8.0	66
81	Bipolar Charging of Aerosol Nanoparticles by a Soft X-ray Photoionizer Journal of Chemical Engineering of Japan, 2002, 35, 786-793.	0.6	64
82	Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning. Nanotechnology, 2008, 19, 145603.	2.6	64
83	Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Separation and Purification Technology, 2016, 159, 100-107.	7.9	64
84	Low-Temperature Crystallization of Barium Ferrite Nanoparticles by a Sodium Citrate-Aided Synthetic Process. Journal of Physical Chemistry C, 2007, 111, 10175-10180.	3.1	63
85	In Situ Synthesis of Polymer Nanocomposite Electrolytes Emitting a High Luminescence with a Tunable Wavelength. Journal of Physical Chemistry B, 2003, 107, 1957-1961.	2.6	61
86	Synthesis of Dual-Size Cellulose–Polyvinylpyrrolidone Nanofiber Composites via One-Step Electrospinning Method for High-Performance Air Filter. Langmuir, 2017, 33, 6127-6134.	3.5	61
87	Experimental studies of ion-induced nucleation. Journal of Aerosol Science, 1992, 23, 327-337.	3.8	60
88	Highly charging of nanoparticles through electrospray of nanoparticle suspension. Journal of Colloid and Interface Science, 2005, 287, 135-140.	9.4	60
89	Production of morphology-controllable porous hyaluronic acid particles using a spray-drying method. Acta Biomaterialia, 2009, 5, 1027-1034.	8.3	60
90	Synthesis of additive-free cationic polystyrene particles with controllable size for hollow template applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 96-105.	4.7	60

#	Article	IF	Citations
91	Response characteristics for four different condensation nucleus counters to particles in the 3–50 nm diameter range. Journal of Aerosol Science, 1985, 16, 443-456.	3.8	59
92	Size Distribution Change of Titania Nano-Particle Agglomerates Generated by Gas Phase Reaction, Agglomeration, and Sintering. Aerosol Science and Technology, 2001, 35, 929-947.	3.1	59
93	Effects of Graphene in Dye-Sensitized Solar Cells Based on Nitrogen-Doped TiO ₂ Composite. Journal of Physical Chemistry C, 2015, 119, 16552-16559.	3.1	59
94	Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration. Chemical Engineering Science, 2015, 137, 947-954.	3.8	59
95	Homogeneous and heterogeneous nucleation in a laminar flow aerosol generator. Journal of Colloid and Interface Science, 1987, 119, 491-504.	9.4	58
96	Preparation of microencapsulated powders by an aerosol spray method and their optical properties. Advanced Powder Technology, 2003, 14, 349-367.	4.1	57
97	Chemical process of silicon epitaxial growth in a SiHCl3–H2 system. Journal of Crystal Growth, 1999, 207, 77-86.	1.5	56
98	Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance. Materials Research Bulletin, 2010, 45, 165-173.	5.2	56
99	Nanometer-Sized Particle Formation from NH3/SO2/H2O/Air Mixtures by Ionizing Irradiation. Aerosol Science and Technology, 1998, 29, 111-125.	3.1	54
100	Design of a highly ordered and uniform porous structure with multisized pores in film and particle forms using a template-driven self-assembly technique. Acta Materialia, 2010, 58, 282-289.	7.9	54
101	Onset of electrical conduction in isotropic conductive adhesives: a general theory. Materials Science in Semiconductor Processing, 1999, 2, 309-319.	4.0	53
102	Nanoparticle assembly on patterned "plus/minus―surfaces from electrospray of colloidal dispersion. Journal of Colloid and Interface Science, 2006, 303, 124-130.	9.4	53
103	Synthesis of composite WO3/TiO2 nanoparticles by flame-assisted spray pyrolysis and their photocatalytic activity. Journal of Alloys and Compounds, 2014, 591, 121-126.	5 . 5	53
104	Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells. Journal of Power Sources, 2016, 306, 764-771.	7.8	53
105	Performance Evaluation of an Improved Particle Size Magnifier (PSM) for Single Nanoparticle Detection. Aerosol Science and Technology, 2003, 37, 791-803.	3.1	52
106	Self-Assembly of Colloidal Nanoparticles Inside Charged Droplets during Spray-Drying in the Fabrication of Nanostructured Particles. Langmuir, 2013, 29, 13152-13161.	3.5	52
107	Nanometer to Submicrometer Magnesium Fluoride Particles with Controllable Morphology. Langmuir, 2010, 26, 12260-12266.	3.5	51
108	Direct Preparation of Uniformly-Distributed YBa2Cu3O7-xPowders by Spray-Pyrolysis. Japanese Journal of Applied Physics, 1988, 27, L1086-L1088.	1.5	50

#	Article	IF	CITATIONS
109	Continuous Single-Step Fabrication of Nonaggregated, Size-Controlled and Cubic Nanocrystalline Y2O3:Eu3+Phosphors Using Flame Spray Pyrolysis. Japanese Journal of Applied Physics, 2004, 43, 3535-3539.	1.5	50
110	Simulation and experimental study of spray pyrolysis of polydispersed droplets. Journal of Materials Research, 2007, 22, 1888-1898.	2.6	50
111	Rapid Synthesis of Nonâ€Aggregated Fine Chloroapatite Blue Phosphor Powders with High Quantum Efficiency. Advanced Materials, 2008, 20, 3422-3426.	21.0	50
112	Intense green and yellow emissions from electrospun BCNO phosphor nanofibers. Journal of Materials Chemistry, 2011, 21, 12629.	6.7	50
113	Direct white light emission from a rare-earth-free aluminium–boron–carbon–oxynitride phosphor. Journal of Materials Chemistry C, 2014, 2, 4297-4303.	5.5	50
114	Size Change of Very Fine Silver Agglomerates by Sintering in a Heated Flow Journal of Chemical Engineering of Japan, 1994, 27, 795-802.	0.6	49
115	Electrical conduction of anisotropic conductive adhesives: effect of size distribution of conducting filler particles. Materials Science in Semiconductor Processing, 1999, 2, 263-269.	4.0	49
116	Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray charger. Journal of Aerosol Science, 2005, 36, 813-829.	3.8	49
117	Hollow Silica as an Optically Transparent and Thermally Insulating Polymer Additive. Langmuir, 2016, 32, 338-345.	3.5	49
118	Gas-Phase Nucleation in GaAs Thin Film Preparation by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1992, 31, 1-11.	1.5	48
119	Homogeneous Nucleation by Continuous Mixing of High Temperature Vapor with Room Temperature Gas. Aerosol Science and Technology, 1987, 6, 15-27.	3.1	47
120	Biopersistence of Inhaled Nickel Oxide Nanoparticles in Rat Lung. Inhalation Toxicology, 2007, 19, 55-58.	1.6	47
121	Development and Evaluation of an Aerosol Generation and Supplying System for Inhalation Experiments of Manufactured Nanoparticles. Environmental Science & Environmental Science, 2009, 43, 5529-5534.	10.0	47
122	Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process. Carbon, 2015, 84, 281-289.	10.3	47
123	Synthesis of Single Crystalline ZnO Nanoparticles by Salt-Assisted Spray Pyrolysis. Journal of Nanoparticle Research, 2003, 5, 47-53.	1.9	45
124	Photoluminescence Optimization of Luminescent Nanocomposites Fabricated by Spray Pyrolysis of a Colloid-Solution Precursor. Journal of the Electrochemical Society, 2007, 154, J121.	2.9	45
125	Enhancement of the thermal stability and mechanical properties of a PMMA/aluminum trihydroxide composite synthesized via bead milling. Powder Technology, 2010, 204, 145-153.	4.2	45
126	Recent Progress in Nanoparticle Dispersion Using Bead Mill. KONA Powder and Particle Journal, 2017, 34, 3-23.	1.7	44

#	Article	IF	Citations
127	Nanoparticles of a doped oxide phosphor prepared by direct-spray pyrolysis. Journal of Materials Research, 2004, 19, 3534-3539.	2.6	43
128	Formation and Luminescence Enhancement of Agglomerate-Free YAG:Ce[sup 3+] Submicrometer Particles by Flame-Assisted Spray Pyrolysis. Journal of the Electrochemical Society, 2007, 154, J91.	2.9	43
129	Fabrication and Characterization of a Yellow-Emitting BCNO Phosphor for White Light-Emitting Diodes. Electrochemical and Solid-State Letters, 2009, 12, J33.	2.2	43
130	Growth of Aerosol Particles by Condensation. Industrial & Engineering Chemistry Fundamentals, 1976, 15, 37-41.	0.7	42
131	Re-entrainment of small aggregate particles from a plane surface by air stream Journal of Chemical Engineering of Japan, 1980, 13, 143-147.	0.6	42
132	Y2SiO5:Ce Phosphor Particles 0.5–1.4 μm in Size with Spherical Morphology. Journal of Solid State Chemistry, 1999, 146, 168-175.	2.9	42
133	A New Observation on the Phase Transformation of TiO2Nanoparticles Produced by a CVD Method. Aerosol Science and Technology, 2005, 39, 104-112.	3.1	42
134	Nanosized Polymer Particle-facilitated Preparation of Mesoporous Silica Particles Using a Spray Method. Chemistry Letters, 2008, 37, 1040-1041.	1.3	42
135	Effect of the Carbon Source on the Luminescence Properties of Boron Carbon Oxynitride Phosphor Particles. Journal of the Electrochemical Society, 2010, 157, J329.	2.9	42
136	Dispersion mechanism of aggregate particles in air Journal of Chemical Engineering of Japan, 1979, 12, 152-159.	0.6	41
137	Preparation of oxide particles with ordered macropores by colloidal templating and spray pyrolysis. Acta Materialia, 2004, 52, 5151-5156.	7.9	41
138	Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation. Catalysis Communications, 2011, 12, 525-529.	3.3	41
139	Image potential between a charged particle and an uncharged particle in aerosol coagulation—enhancement in all size regimes and interplay with van der Waals forces. Journal of Colloid and Interface Science, 1991, 141, 191-198.	9.4	40
140	A differential mobility analyzer and a Faraday cup electrometer for operation at 200–930 Pa pressure. Journal of Aerosol Science, 2000, 31, 1389-1395.	3.8	40
141	Nanoparticle Separation in Salted Droplet Microreactors. Chemistry of Materials, 2002, 14, 2623-2627.	6.7	40
142	Controllable crystallite and particle sizes of WO ₃ particles prepared by a sprayâ€pyrolysis method and their photocatalytic activity. AICHE Journal, 2014, 60, 41-49.	3.6	40
143	Rapid microwave-assisted synthesis of nitrogen-functionalized hollow carbon spheres with high monodispersity. Carbon, 2016, 107, 11-19.	10.3	40
144	Changes in the Shape and Mobility of Colloidal Gold Nanorods with Electrospray and Differential Mobility Analyzer Methods. Langmuir, 2005, 21, 10375-10382.	3.5	39

#	Article	IF	Citations
145	Macroporous anatase titania particle: Aerosol self-assembly fabrication with photocatalytic performance. Chemical Engineering Journal, 2009, 152, 293-296.	12.7	39
146	Direct synthesis of spherical YAC:Ce phosphor from precursor solution containing polymer and urea. Chemical Engineering Journal, 2012, 210, 461-466.	12.7	39
147	Nanostructured design of electrocatalyst support materials for high-performance PEM fuel cell application. Journal of Power Sources, 2012, 203, 26-33.	7.8	39
148	Fabrication and Characterization of SiO2 Particles Generated by Spray Method for Standards Aerosol Journal of Chemical Engineering of Japan, 2001, 34, 1285-1292.	0.6	38
149	Self-organization kinetics of mesoporous nanostructured particles. AICHE Journal, 2004, 50, 2583-2593.	3.6	38
150	Production of Narrow-Size-Distribution Polymer-Pigment-Nanoparticle Composites via Electrohydrodynamic Atomization. Macromolecular Materials and Engineering, 2007, 292, 495-502.	3.6	38
151	Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis. Journal of the European Ceramic Society, 2007, 27, 4489-4497.	5.7	38
152	Self-Organized Macroporous Carbon Structure Derived from Phenolic Resin via Spray Pyrolysis for High-Performance Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11944-11950.	8.0	38
153	Depostition of submicron aerosol particles in turbulent and transitional flow. AICHE Journal, 1993, 39, 17-26.	3.6	37
154	Modeling of Epitaxial Silicon Thinâ€Film Growth on a Rotating Substrate in a Horizontal Singleâ€Wafer Reactor. Journal of the Electrochemical Society, 1995, 142, 4272-4278.	2.9	37
155	Numerical Simulation and Experiment on the Transport of Fine Particles in a Ventilated Room. Aerosol Science and Technology, 1996, 25, 242-255.	3.1	37
156	Experimental Measurement of Competitive Ion-Induced and Binary Homogeneous Nucleation in SO2/H2O/N2Mixtures. Aerosol Science and Technology, 1997, 26, 527-543.	3.1	36
157	Morphology Control of Multicomponent Oxide Phosphor Particles Containing High Ductility Component by High Temperature Spray Pyrolysis. Journal of the Electrochemical Society, 1999, 146, 2744-2747.	2.9	36
158	Role of urea addition in the preparation of tetragonal BaTiO3 nanoparticles using flame-assisted spray pyrolysis. Journal of the European Ceramic Society, 2008, 28, 2573-2580.	5.7	36
159	A constant-current electrospinning system for production of high quality nanofibers. Review of Scientific Instruments, 2008, 79, 093904.	1.3	36
160	Patterned indium tin oxide nanofiber films and their electrical and optical performance. Nanotechnology, 2008, 19, 375601.	2.6	36
161	Nanoparticle formation in spray pyrolysis under low-pressure conditions. Chemical Engineering Science, 2010, 65, 1846-1854.	3.8	36
162	Influences of Surface Charge, Size, and Concentration of Colloidal Nanoparticles on Fabrication of Self-Organized Porous Silica in Film and Particle Forms. Langmuir, 2013, 29, 6262-6270.	3.5	36

#	Article	IF	CITATIONS
163	Size- and charge-controllable polystyrene spheres for templates in the preparation of porous silica particles with tunable internal hole configurations. Chemical Engineering Journal, 2014, 256, 421-430.	12.7	36
164	Enhanced Electrocatalytic Activity of Pt/3D Hierarchical Bimodal Macroporous Carbon Nanospheres. ACS Applied Materials & Diterfaces, 2017, 9, 23792-23799.	8.0	36
165	Experimental control of ultrafine TiO2 particle generation from thermal decomposition of titanium tetraisopropoxide vapor. Chemical Engineering Science, 1989, 44, 1369-1375.	3.8	35
166	Electrical Conduction in Insulator Particle—Solid-State Ionic and Conducting Particle-Insulator Matrix Composites A Unified Theory. Journal of the Electrochemical Society, 2000, 147, 3157.	2.9	35
167	Synthesis of Monodisperse Ultrapure Gallium Nitride Nanoparticles by MOCVD. Chemical Vapor Deposition, 2004, 10, 11-13.	1.3	35
168	Nanoparticle formation through solidâ€fed flame synthesis: Experiment and modeling. AICHE Journal, 2009, 55, 885-895.	3.6	35
169	Facilitated Aerosol Sizing Using the Differential Mobility Analyzer. Aerosol Science and Technology, 1990, 12, 225-239.	3.1	34
170	Gas-Phase Nucleation in an Atmospheric Pressure Chemical Vapor Deposition Process for SiO2Films Using Tetraethylorthosilicate (TEOS). Japanese Journal of Applied Physics, 1992, 31, L1439-L1442.	1.5	34
171	Title is missing!. Journal of Nanoparticle Research, 2003, 5, 191-198.	1.9	34
172	Nanoparticle Synthesis by Ionizing Source Gas in Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, L77-L79.	1.5	34
173	Enhancement of dye-sensitized solar cells using Zr/N-doped TiO2 composites as photoelectrodes. RSC Advances, 2014, 4, 9946.	3.6	34
174	Adsorption and Desorption Rate of Multicomponent Organic Species on Silicon Wafer Surface. Journal of the Electrochemical Society, 2001, 148, G365.	2.9	33
175	Dispersion and aggregation of nanoparticles derived from colloidal droplets under low-pressure conditions. Journal of Colloid and Interface Science, 2005, 288, 423-431.	9.4	33
176	Electrospun Pt/SnO2 nanofibers as an excellent electrocatalysts for hydrogen oxidation reaction with ORR-blocking characteristic. Catalysis Communications, 2013, 33, 11-14.	3.3	33
177	Aerosol Synthesis of Self-Organized Nanostructured Hollow and Porous Carbon Particles Using a Dual Polymer System. Langmuir, 2014, 30, 11257-11262.	3 . 5	33
178	Tunable Synthesis of Mesoporous Silica Particles with Unique Radially Oriented Pore Structures from Tetramethyl Orthosilicate via Oil–Water Emulsion Process. Langmuir, 2017, 33, 783-790.	3.5	33
179	Binary nucleation of methanesulfonic acid and water. Journal of Aerosol Science, 1989, 20, 585-607.	3.8	32
180	Preparation Conditions and Morphology of Superconducting Fine Particles in the Bi-Ca-Sr-Cu-O System Prepared by Spray Pyrolysis. Journal of the American Ceramic Society, 1991, 74, 2117-2122.	3.8	32

#	Article	IF	CITATIONS
181	Nonlinear increase in silicon epitaxial growth rate in a SiHCl3î—,H2 system under atmospheric pressure. Journal of Crystal Growth, 1997, 182, 352-362.	1.5	32
182	OBSERVATION OF AEROSOL FORMATION DURING LASER ABLATION USING A LOW-PRESSURE DIFFERENTIAL MOBILITY ANALYZER. Journal of Aerosol Science, 2000, 31, 391-401.	3.8	32
183	Optical properties of dense and porous spheroids consisting of primary silica nanoparticles. Journal of Aerosol Science, 2002, 33, 1701-1720.	3.8	32
184	Unipolar Charging of Nanosized Aerosol Particles Using Soft X-ray Photoionization. Aerosol Science and Technology, 2003, 37, 330-341.	3.1	32
185	Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route. Materials Letters, 2005, 59, 1183-1187.	2.6	32
186	Measurement of the Effective Density of Both Spherical Aggregated and Ordered Porous Aerosol Particles Using Mobility- and Mass-Analyzers. Aerosol Science and Technology, 2009, 43, 136-144.	3.1	32
187	Synthesis of nanocrystalline GaN from Ga2O3 nanoparticles derived from salt-assisted spray pyrolysis. Advanced Powder Technology, 2009, 20, 29-34.	4.1	32
188	Highly ordered porous monolayer generation by dual-speed spin-coating with colloidal templates. Chemical Engineering Journal, 2011, 167, 409-415.	12.7	32
189	Title is missing!. Journal of Materials Science, 2001, 36, 1701-1705.	3.7	31
190	Preparation of Submicron- and Nanometer-Sized Particles of Y2O3:Eu3+ by Flame Spray Pyrolysis Using Ultrasonic and Two-Fluid Atomizers. Journal of Chemical Engineering of Japan, 2006, 39, 68-76.	0.6	31
191	Synthesis and film deposition of Ni nanoparticles for base metal electrode applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337, 96-101.	4.7	31
192	Ultrahigh oxygen reduction activity of Pt/nitrogen-doped porous carbon microspheres prepared via spray-drying. Journal of Power Sources, 2013, 229, 58-64.	7.8	31
193	Thermophoretic and evaporational losses of ultrafine particles in heated flow. AICHE Journal, 1993, 39, 1859-1869.	3.6	30
194	Rate Theory of Multicomponent Adsorption of Organic Species on Silicon Wafer Surface. Journal of the Electrochemical Society, 2000, 147, 2319.	2.9	30
195	Nanoparticle Formation Mechanism in CVD Reactor with Ionization of Source Vapor. Journal of Nanoparticle Research, 2003, 5, 31-37.	1.9	30
196	Optical band gap and ultralow dielectric constant materials prepared by a simple dip coating process. Journal of Applied Physics, 2003, 93, 9237-9242.	2.5	30
197	Characterization of dip-coated ITO films derived from nanoparticles synthesized byâ£low-pressure spray pyrolysis. Journal of Nanoparticle Research, 2006, 8, 343-350.	1.9	30
198	Chemical and photoluminescence analyses of new carbon-based boron oxynitride phosphors. Materials Research Bulletin, 2009, 44, 2099-2102.	5.2	30

#	Article	IF	CITATIONS
199	Facile synthesis of single-phase spherical $\hat{l}\pm\hat{a}\in^3$ -Fe16N2/Al2O3 core-shell nanoparticles via a gas-phase method. Journal of Applied Physics, 2013, 113, 164301.	2.5	30
200	Large-Scale Production of CdSe Nanocrystal by a Continuous Flow Reactor. Journal of Nanoparticle Research, 2003, 5, 81-85.	1.9	29
201	Particle Reduction and Control in Plasma Etching Equipment. IEEE Transactions on Semiconductor Manufacturing, 2005, 18, 477-486.	1.7	29
202	An experimental study of ion-induced nucleation using a drift tube ion mobility spectrometer/mass spectrometer and a cluster-differential mobility analyzer/Faraday cup electrometer. Journal of Aerosol Science, 2005, 36, 1036-1049.	3.8	29
203	Highly Luminous Hollow Chloroapatite Phosphors Formed by a Template-Free Aerosol Route for Solid-State Lighting. Chemistry of Materials, 2009, 21, 4685-4691.	6.7	29
204	Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4418-4427.	8.0	29
205	Turbulent coagulation of aerosols in a stirred tank Journal of Chemical Engineering of Japan, 1977, 10, 142-147.	0.6	28
206	Visualization and numerical simulation of fine particle transport in a low-pressure parallel plate chemical vapor deposition reactor. Chemical Engineering Science, 2002, 57, 497-506.	3.8	28
207	One-step synthesis and photoluminescence of doped strontium titanate particles with controlled morphology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 113, 60-66.	3.5	28
208	Direct Preparation of Nonagglomerated Indium Tin Oxide Nanoparticles using Various Spray Pyrolysis Methods. Journal of Materials Research, 2004, 19, 1077-1086.	2.6	28
209	Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Analytica Chimica Acta, 2007, 585, 193-201.	5.4	28
210	High performance electrospinning system for fabricating highly uniform polymer nanofibers. Review of Scientific Instruments, 2009, 80, 026106.	1.3	28
211	Tailored synthesis of macroporous Pt/WO ₃ photocatalyst with nanoaggregates via flame assisted spray pyrolysis. AICHE Journal, 2016, 62, 3864-3873.	3.6	28
212	Wall Deposition of Ultrafine Aerosol Particles by Thermophoresis in Nonisothermal Laminar Pipe Flow of Different Carrier Gas. Japanese Journal of Applied Physics, 1994, 33, 1174-1181.	1.5	27
213	One-Step Synthesis for Zn2SiO4:Mn Particles 0.3-1.3 µm in Size with Spherical Morphology and Non-Aggregation. Japanese Journal of Applied Physics, 2000, 39, L1051-L1053.	1.5	27
214	Single Route for Producing Organized Metallic Domes, Dots, and Pores by Colloidal Templating and Over-Sputtering. Advanced Materials, 2002, 14, 930.	21.0	27
215	High Coercivity of Ordered Macroporous FePt Films Synthesized via Colloidal Templates. Nano Letters, 2005, 5, 1525-1528.	9.1	27
216	Indium Tin Oxide Nanofiber Film Electrode for High Performance Dye Sensitized Solar Cells. Japanese Journal of Applied Physics, 2010, 49, 010213.	1.5	27

#	Article	IF	Citations
217	Selective Biosorption and Recovery of Tungsten from an Urban Mine and Feasibility Evaluation. Industrial & Engineering Chemistry Research, 2016, 55, 2903-2910.	3.7	27
218	Measurement of electric charge of aerosol particles generated by various methods Journal of Chemical Engineering of Japan, 1981, 14, 54-58.	0.6	26
219	Evaluation and control of particle properties in aerosol reactors. AICHE Journal, 1988, 34, 1249-1256.	3.6	26
220	Luminescent Polymer Electrolytes Prepared by Growing ZnO Nanoparticles in the Matrix of Polyethylene Glycol. Journal of the Electrochemical Society, 2002, 149, H107.	2.9	26
221	Fabrication and photoluminescence of highly crystalline GaN and GaN:Mg nanoparticles. Journal of Crystal Growth, 2005, 281, 234-241.	1.5	26
222	Single crystal ZnO:Al nanoparticles directly synthesized using low-pressure spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 231-237.	3.5	26
223	Mesopore-free silica shell with nanometer-scale thickness-controllable on cationic polystyrene core. Journal of Colloid and Interface Science, 2013, 389, 134-146.	9.4	26
224	Simple synthesis of GaN nanoparticles from gallium nitrate and ammonia aqueous solution under a flow of ammonia gas. Materials Letters, 2006, 60, 73-76.	2.6	25
225	Investigation of Gene Expression of MMP-2 and TIMP-2 mRNA in Rat Lung in Inhaled Nickel Oxide and Titanium Dioxide Nanoparticles. Industrial Health, 2011, 49, 344-352.	1.0	25
226	Towards Better Phosphor Design: Effect of SiO ₂ Nanoparticles on Photoluminescence Enhancement of YAG:Ce. ECS Journal of Solid State Science and Technology, 2013, 2, R91-R95.	1.8	25
227	Controlled surface topography of nanostructured particles prepared by sprayâ€drying process. AICHE Journal, 2017, 63, 1503-1511.	3.6	25
228	PREDICTION OF COLLECTION EFFICIENCY OF AEROSOLS BY HIGH-POROSITY FIBROUS FILTER. Journal of Chemical Engineering of Japan, 1973, 6, 349-354.	0.6	24
229	ELECTROSTATIC COAGULATION OF BIPOLARLY CHARGED AEROSOL PARTICLES. Journal of Chemical Engineering of Japan, 1981, 14, 467-473.	0.6	24
230	Enhancement of brownian and turbulent diffusive deposition of charged aerosol particles in the presence of an electric field. Journal of Colloid and Interface Science, 1989, 128, 157-168.	9.4	24
231	Particle Generation and Film Formation in an Atmospheric-Pressure Chemical Vapor Deposition Reactor Using the Tetraethylorthosilicate (TEOS)/He, TEOS/O2/He, and TEOS/O3/He Systems. Japanese Journal of Applied Physics, 1993, 32, L748-L751.	1.5	24
232	Airborne Organic Contamination Behavior on Silicon Wafer Surface. Journal of the Electrochemical Society, 2003, 150, G148.	2.9	24
233	Polymer-Assisted Annealing of Spray-Pyrolyzed Powders for Formation of Luminescent Particles with Submicrometer and Nanometer Sizes. Journal of the American Ceramic Society, 2007, 90, 425-432.	3.8	24
234	High performance of GaN thin films grown on sapphire substrates coated with a silica-submicron-sphere monolayer film. Applied Physics Letters, 2008, 92, .	3.3	24

#	Article	IF	CITATIONS
235	Highly luminescent silica-coated ZnO nanoparticles dispersed in an aqueous medium. Journal of Luminescence, 2011, 131, 921-925.	3.1	24
236	Gas phase preparation of spherical core–shell α′′-Fe16N2/SiO2 magnetic nanoparticles. Nanoscale, 2014, 6487.	6, 5.6	24
237	Experimental and theoretical approach to evaluation of nanostructured carbon particles derived from phenolic resin via spray pyrolysis. Chemical Engineering Journal, 2015, 271, 79-86.	12.7	24
238	Effect of oxidation on α″-Fe16N2 phase formation from plasma-synthesized spherical core–shell α-Fe/Al2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, 381, 89-98.	2.3	24
239	Aerosol formation by rapid nucleation during the preparation of SiO2 thin films from SiCl4 and O2 gases by CVD process. Chemical Engineering Science, 1991, 46, 1545-1560.	3.8	23
240	Preparation of ZnO-TiO2Composite Fine Particles Using the Ultrasonic Spray Pyrolysis Method and Their Characteristics on Ultraviolet Cutoff. Aerosol Science and Technology, 1993, 19, 468-477.	3.1	23
241	Formation of Submicron Copper Sulfide Particles Using Spray Pyrolysis Method. Japanese Journal of Applied Physics, 1998, 37, L288-L290.	1.5	23
242	The roles of ammonia and ammonium bicarbonate in the preparation of nickel particles from nickel chloride. Journal of Materials Research, 2000, 15, 2157-2166.	2.6	23
243	Particle generation and thin film surface morphology in the tetraethylorthosilicate/oxygen plasma enhanced chemical vapor deposition process. Journal of Applied Physics, 2000, 88, 3047-3052.	2.5	23
244	Nanostructured ZnO/Y2O3:Eu for use as fillers in luminescent polymer electrolyte composites. Journal of Alloys and Compounds, 2004, 377, 298-305.	5.5	23
245	A polymer solution process for synthesis of (Y,Gd)3Al5O12:Ce phosphor particles. Journal of Non-Crystalline Solids, 2005, 351, 697-704.	3.1	23
246	Plasma Synthesis of Light Emitting Gallium Nitride Nanoparticles Using a Novel Microwave-Resonant Cavity. Japanese Journal of Applied Physics, 2006, 45, 328-332.	1.5	23
247	Rapid synthesis of a BN/CNT composite particle via spray routes using ferrocene/ethanol as a catalyst/carbon source. Materials Letters, 2009, 63, 1847-1850.	2.6	23
248	Intense UV-light absorption of ZnO nanoparticles prepared using a pulse combustion-spray pyrolysis method. Chemical Engineering Journal, 2009, 155, 433-441.	12.7	23
249	Characterization of silica-coated Ag nanoparticles synthesized using a water-soluble nanoparticle micelle. Advanced Powder Technology, 2009, 20, 94-100.	4.1	23
250	A New Physical Route to Produce Monodispersed Microsphere Nanoparticleâ^'Polymer Composites. Langmuir, 2009, 25, 11038-11042.	3.5	23
251	Direct synthesis of hBN/MWCNT composite particles using spray pyrolysis. Journal of Alloys and Compounds, 2009, 471, 166-171.	5.5	23
252	Enhanced photoluminescence of ZnO–SiO2 nanocomposite particles and the analyses of structure and composition. Journal of Luminescence, 2011, 131, 138-146.	3.1	23

#	Article	IF	CITATIONS
253	Influence of Polymer Decomposition Temperature on the Formation of Rare-Earth Free Boron Carbon Oxynitride Phosphors. Journal of Chemical Engineering of Japan, 2012, 45, 995-1000.	0.6	23
254	Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials. Journal of Luminescence, 2015, 166, 148-155.	3.1	23
255	Diffusion charging of ultrafine aerosol particles by positive helium, argon, and nitrogen ions. Journal of Applied Physics, 1987, 62, 3050-3052.	2.5	22
256	Turbulent and brownian diffusive deposition of aerosol particles onto a rough wall Journal of Chemical Engineering of Japan, 1987, 20, 57-64.	0.6	22
257	A model calculation of particle deposition onto a rough wall by Brownian and turbulent diffusion. Journal of Colloid and Interface Science, 1988, 125, 198-211.	9.4	22
258	Bipolar Diffusion Charging of Aerosol Particles Under High Particle/Ion Concentration Ratios. Aerosol Science and Technology, 1989, 11, 144-156.	3.1	22
259	Influence of particle inertia on aerosol deposition in a stirred turbulent flow field. Journal of Aerosol Science, 1989, 20, 419-429.	3.8	22
260	Preparation of ultrafine superconductive Biî—,Caî—,Srî—,Cuî—,O particles by metalorganic chemical vapor deposition. Journal of Aerosol Science, 1993, 24, 357-366.	3.8	22
261	Preparation and characterization of nanopigmentâ€poly(styreneâ€ <i>co</i> â€ <i>n</i> â€butyl) Tj ETQq1 1 0.784. suspension polymerization. Journal of Applied Polymer Science, 2008, 108, 1288-1297.	314 rgBT / 2.6	Overlock 1 22
262	Synthesis of Monophasic CaxBa($1\hat{a}^x$)TiO3 Nanoparticles with High Ca Content (x > 23%) and Their Photoluminescence Properties. Chemistry of Materials, 2008, 20, 7440-7446.	6.7	22
263	α″-Fe16N2 phase formation of plasma-synthesized core–shell type α-Fe nanoparticles under various conditions. Advanced Powder Technology, 2014, 25, 582-590.	4.1	22
264	Turbulent coagulation of aerosols in a pipe flow. Journal of Aerosol Science, 1978, 9, 399-410.	3.8	21
265	Particle generation and film formation in an atmospheric-pressure chemical vapour deposition process using tetraethylorthosilicate. Journal of Materials Science, 1995, 30, 932-937.	3.7	21
266	Characterization of particle contamination in process steps during plasma-enhanced chemical vapor deposition operation. Journal of Aerosol Science, 2003, 34, 923-936.	3.8	21
267	Synthesis of SiO2 nanoparticles from sprayed droplets of tetraethylorthosilicate by the flame spray pyrolysis. Current Applied Physics, 2006, 6, e110-e113.	2.4	21
268	Vapor condensation on nanoparticles in the mixer of a particle size magnifier. International Journal of Heat and Mass Transfer, 2007, 50, 2333-2338.	4.8	21
269	Multilayer film deposition of Ag and SiO2 nanoparticles using a spin coating process. Thin Solid Films, 2008, 516, 8721-8725.	1.8	21
270	Morphology and Particle Size Distribution Controls of Droplet-to-Macroporous/Hollow Particles Formation in Spray Drying Process of Colloidal Mixtures Precursor. Aerosol Science and Technology, 2009, 43, 1184-1191.	3.1	21

#	Article	IF	Citations
271	Morphologyâ€dependent electrocatalytic activity of nanostructured Pt/C particles from hybrid aerosol–colloid process. AICHE Journal, 2016, 62, 440-450.	3.6	21
272	Homogeneous nucleation in supersaturated vapor containing foreign seed aerosol. Journal of Colloid and Interface Science, 1987, 116, 563-581.	9.4	20
273	Numerical Evaluation of Silicon-Thin Film Growth from SiHCl3-H2Gas Mixture in a Horizontal Chemical Vapor Deposition Reactor. Japanese Journal of Applied Physics, 1994, 33, 1977-1985.	1.5	20
274	Alternative analytical solution to condensational growth of polydisperse aerosols in the continuum regime. Journal of Aerosol Science, 2001, 32, 187-197.	3.8	20
275	Templated Synthesis of Silica Hollow Particles by Using Spray Pyrolysis. Journal of Chemical Engineering of Japan, 2004, 37, 1099-1104.	0.6	20
276	Direct Measurement of Nucleation and Growth Modes in Titania Nanoparticles Generation by a CVD Method. Journal of Chemical Engineering of Japan, 2004, 37, 1379-1389.	0.6	20
277	Photoluminescent and crystalline properties of Y3 \hat{a} °xAl5O12:Cex3+ phosphor nanofibers prepared by electrospinning. Journal of Applied Physics, 2009, 105, .	2.5	20
278	Characterization of silica-coated silver nanoparticles prepared by a reverse micelle and hydrolysis–condensation process. Chemical Engineering Journal, 2010, 156, 200-205.	12.7	20
279	Measuring the effective density, porosity, and refractive index of carbonaceous particles by tandem aerosol techniques. Carbon, 2011, 49, 2163-2172.	10.3	20
280	A New Technique of Particle Size Analysis of Aerosols and Fine Powders Using an Ultramicroscope. Industrial & Engineering Chemistry Fundamentals, 1975, 14, 47-51.	0.7	19
281	Studies in binary nucleation: The dibutylphthalate/dioctylphthalate system. Journal of Chemical Physics, 1988, 89, 6442-6453.	3.0	19
282	An experimental and theoretical investigation of rarefied gas flow through circular tube of finite length. Chemical Engineering Science, 2002, 57, 4027-4036.	3.8	19
283	Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. Journal of Aerosol Science, 2006, 37, 598-615.	3.8	19
284	Decolorization of beads-milled TiO2 nanoparticles suspension in an organic solvent. Advanced Powder Technology, 2012, 23, 55-63.	4.1	19
285	Biosorption of Tungsten byEscherichia colifor an Environmentally Friendly Recycling System. Industrial & Description of Tungsten by Engineering Chemistry Research, 2013, 52, 14441-14448.	3.7	19
286	Effect of magnetic field strength on the alignment of $\hat{l}\pm\hat{a}\in \hat{l}\pm\hat{a}\in \hat{l}\pm\hat{a}\in \hat{l}\pm\hat{a}$ and $\hat{l}\pm\hat{a}\in \hat{l}\pm\hat{a}$ and $\hat{l}\pm\hat{l}\pm\hat{l}\pm\hat{l}\pm\hat{l}\pm\hat{l}\pm\hat{l}\pm\hat{l}\pm$	5.6	19
287	Selective Low-Energy Carbon Dioxide Adsorption Using Monodisperse Nitrogen-Rich Hollow Carbon Submicron Spheres. Langmuir, 2018, 34, 30-35.	3.5	19
288	CHANGE IN PARTICLE SIZE DISTRIBUTIONS OF POLYDISPERSE AEROSOLS UNDERGOING BROWNIAN COAGULATION. Journal of Chemical Engineering of Japan, 1975, 8, 317-322.	0.6	18

#	Article	IF	CITATIONS
289	Calibration of differential mobility analyser by visual method. Journal of Aerosol Science, 1981, 12, 339-348.	3.8	18
290	Direct Preparation of Fine Powders of the 80 K Superconducting Phase in the Bi-Ca-Sr-Cu-O System by Spray Pyrolysis. Japanese Journal of Applied Physics, 1989, 28, L1175-L1178.	1.5	18
291	Preparation of ultrafine zirconium dioxide particles by thermal decomposition of zirconium alkoxide vapour. Journal of Materials Science, 1989, 24, 2275-2280.	3.7	18
292	Formation of Fine Particles of Zinc Sulfide from Thiourea Complexes by Spray Pyrolysis. Japanese Journal of Applied Physics, 1995, 34, L207-L209.	1.5	18
293	A Role of Template Surface Charge in the Preparation of Porous and Hollow Particles Using Spray-drying. Chemistry Letters, 2009, 38, 1076-1077.	1.3	18
294	Control of cone-jet geometry during electrospray by an electric current. Advanced Powder Technology, 2013, 24, 532-536.	4.1	18
295	Preparation of agglomeration-free spherical hollow silica particles using an electrospray method with colloidal templating. Materials Letters, 2013, 106, 432-435.	2.6	18
296	Efficient Recycling of Poly(lactic acid) Nanoparticle Templates for the Synthesis of Hollow Silica Spheres. ACS Sustainable Chemistry and Engineering, 2017, 5, 4941-4947.	6.7	18
297	Surface Plasmon Enhanced Nitrogenâ€Doped Graphene Quantum Dot Emission by Single Bismuth Telluride Nanoplates. Advanced Optical Materials, 2017, 5, 1700176.	7.3	18
298	Recovery and Recycling of Tungsten by Alkaline Leaching of Scrap and Charged Amino Group Assisted Precipitation. ACS Sustainable Chemistry and Engineering, 2018, 6, 4246-4252.	6.7	18
299	Electrical neutralization of charged aerosol particles by bipolar ions Journal of Chemical Engineering of Japan, 1983, 16, 229-235.	0.6	17
300	Preparation of gas sensitive film by deposition of ultrafine tin dioxide particles. Journal of Aerosol Science, 1988, 19, 253-263.	3.8	17
301	Effect of cluster/particle deposition on atmospheric pressure chemical vapor deposition of SiO2 from four gaseous organic Si-containing precursors and ozone. Journal of Applied Physics, 1999, 85, 4196-4206.	2.5	17
302	Charged nanoparticle formation from humidified gases with and without dilute benzene under electron beam irradiation. Journal of Aerosol Science, 2003, 34, 977-991.	3.8	17
303	Silica Films Containing Ordered Pores Prepared by Dip Coating of Silica Nanoparticles and Polystyrene Beads Colloidal Mixture. Journal of Sol-Gel Science and Technology, 2004, 29, 41-47.	2.4	17
304	Direct Synthesis of Barium Titanate Nanoparticles Via a Low Pressure Spray Pyrolysis Method. Journal of Materials Research, 2005, 20, 2873-2882.	2.6	17
305	Coagulation of bipolarly charged ultrafine aerosol particles. Journal of Aerosol Science, 2005, 36, 830-845.	3.8	17
306	Effect of X-ray energy and ionization time on the charging performance and nanoparticle formation of a soft X-ray photoionization charger. Advanced Powder Technology, 2009, 20, 529-536.	4.1	17

#	ARTICLE	IF	Citations
307	Droplet Generation and Nanoparticle Formation in Low-Pressure Spray Pyrolysis. Aerosol Science and Technology, 2010, 44, 692-705.	3.1	17
308	Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses. Atmospheric Environment, 2014, 97, 456-461.	4.1	17
309	Agglomerate-free BaTiO ₃ particles by salt-assisted spray pyrolysis. Journal of Materials Research, 2002, 17, 3222-3229.	2.6	16
310	Effect of NO 2 on Particle Formation in SO 2 /H 2 O/Air Mixtures by Ion-Induced and Homogeneous Nucleation. Aerosol Science and Technology, 2002, 36, 941-952.	3.1	16
311	Classification of monodisperse aerosol particles using an adjustable soft X-ray charger. Powder Technology, 2003, 135-136, 336-344.	4.2	16
312	Synthesis of a Colorless Suspension of TiO ₂ Nanoparticles by Nitrogen Doping and the Bead-Mill Dispersion Process. Industrial & Engineering Chemistry Research, 2013, 52, 547-555.	3.7	16
313	High-purity core-shell α″-Fe16N2/Al2O3 nanoparticles synthesized from α-hematite for rare-earth-free magnet applications. Advanced Powder Technology, 2016, 27, 2520-2525.	4.1	16
314	Facile and Efficient Removal of Tungsten Anions Using Lysine-Promoted Precipitation for Recycling High-Purity Tungsten. ACS Sustainable Chemistry and Engineering, 2017, 5, 3141-3147.	6.7	16
315	Energy-Efficient Templating Method for the Industrial Production of Porous Carbon Particles by a Spray Pyrolysis Process Using Poly(methyl methacrylate). Industrial & Degraphies in Chemistry Research, 2018, 57, 11335-11341.	3.7	16
316	Correlations between Reduction Degree and Catalytic Properties of WO <i></i> Nanoparticles. ACS Omega, 2018, 3, 8963-8970.	3.5	16
317	Brownian coagulation of two-component ultrafine aerosols. Journal of Colloid and Interface Science, 1986, 113, 42-54.	9.4	15
318	Homogeneous nucleation in spatially inhomogeneous systems. Journal of Applied Physics, 1990, 68, 4550-4555.	2.5	15
319	Precursors in Atmospheric-Pressure Chemical Vapor Deposition of Silica Films from Tetraethylorthosilicate/Ozone System. Japanese Journal of Applied Physics, 1994, 33, L447-L450.	1.5	15
320	Characterization of fine particle trapping in a plasma-enhanced chemical vapor deposition reactor. Journal of Applied Physics, 2002, 92, 5525-5531.	2.5	15
321	Time-Dependent Airborne Organic Contamination on Silicon Wafer Surface Stored in a Plastic Box. Japanese Journal of Applied Physics, 2003, 42, 1575-1580.	1.5	15
322	Polymer-supported solution synthesis of blue luminescent BaMgAl10O17:Eu2+ particles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 188-195.	3.5	15
323	Effects of Ethanol Addition and Ba/Ti Ratios on Preparation of Barium Titanate Nanocrystals Via a Spray Pyrolysis Method. Journal of the American Ceramic Society, 2006, 89, 888-893.	3.8	15
324	Heating Profile Effect on Morphology, Crystallinity, and Photoluminescent Properties of Y ₂ O ₃ :Eu ³⁺ Phosphor Nanofibers Prepared Using an Electrospinning Method. Japanese Journal of Applied Physics, 2007, 46, 6705.	1.5	15

#	Article	IF	CITATIONS
325	Photoluminescence Characteristics of Macroporous Eu-Doped Yttrium Oxide Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2009, 48, 032001.	1.5	15
326	Synthesis of Gallium Nitride Nanoparticles by Microwave Plasmaâ€Enhanced CVD. Chemical Vapor Deposition, 2010, 16, 151-156.	1.3	15
327	Photoluminescent ZrO ₂ :Eu ³⁺ Nanofibers Prepared via Electrospinning. Japanese Journal of Applied Physics, 2010, 49, 115003.	1.5	15
328	Low-energy bead-milling dispersions of rod-type titania nanoparticles and their optical properties. Advanced Powder Technology, 2014, 25, 1492-1499.	4.1	15
329	Synthesis of nitrogen-functionalized macroporous carbon particles via spray pyrolysis of melamine-resin. RSC Advances, 2016, 6, 83421-83428.	3.6	15
330	Application of particle enlargement by condensation to industrial dust collection Journal of Chemical Engineering of Japan, 1978, 11, 469-475.	0.6	14
331	Electrical charging of uncharged aerosol particles under at bipolar ion concentrations Journal of Chemical Engineering of Japan, 1980, 13, 55-60.	0.6	14
332	A Direct Approach for Evaluating the Thermal Condition of a Silicon Substrate under Infrared Rays and Specular Reflectors. Journal of the Electrochemical Society, 1999, 146, 713-718.	2.9	14
333	Unipolar ion charging and coagulation during aerosol formation by chemical reaction. Powder Technology, 2003, 135-136, 321-335.	4.2	14
334	Experimental Evaluation of the Optical Properties of Porous Silica/Carbon Composite Particles. Aerosol Science and Technology, 2003, 37, 735-751.	3.1	14
335	Monolayer deposition of L10 FePt nanoparticles via electrospray route. Journal of Magnetism and Magnetic Materials, 2007, 313, 62-68.	2.3	14
336	Liquid-phase Synthesis of CaF ₂ Particles and Their Low Refractive Index Characterization. KONA Powder and Particle Journal, 2011, 29, 141-157.	1.7	14
337	Removal of airborne particles by a tubular particle-removal device using UV/photoelectron method. Journal of Aerosol Science, 1997, 28, 649-661.	3.8	13
338	Gas-phase nucleation in the tetraethylorthosilicate (TEOS)/O3 APCVD process. AICHE Journal, 1997, 43, 2688-2697.	3.6	13
339	Calibration of Polarization-Sensitive and Dual-Angle Laser Light Scattering Methods Using Standard Latex Particles. Journal of Colloid and Interface Science, 2001, 241, 71-80.	9.4	13
340	Functional Effects of Carbon-Coated Iron Metal Particles for Magnetic Recording Media. Electrochemical and Solid-State Letters, 2002, 5, J9.	2.2	13
341	Performance of a mixing-type CNC for nanoparticles at low-pressure conditions. Journal of Aerosol Science, 2002, 33, 1389-1404.	3.8	13
342	Measurement of Cluster Ions and Residue Nanoparticles from Water Samples with an Electrospray/Differential Mobility Analyzer. Analytical Sciences, 2003, 19, 843-851.	1.6	13

#	Article	IF	Citations
343	Fabrication of L10 FePtAg nanoparticles and a study of the effect of Ag during the annealing process. Journal of Magnetism and Magnetic Materials, 2006, 305, 514-519.	2.3	13
344	A Pulse Combustionâ€Spray Pyrolysis Process for the Preparation of Nano―and Submicrometerâ€Sized Oxide Particles. Journal of the American Ceramic Society, 2007, 90, 3779-3785.	3.8	13
345	Particle dynamics simulation of nanoparticle formation in a flame reactor using a polydispersed submicron-sized solid precursor. Chemical Engineering Journal, 2010, 158, 362-367.	12.7	13
346	Synthesis of uniformly porous NiO/ZrO2 particles. Materials Research Bulletin, 2011, 46, 708-715.	5. 2	13
347	New particle formation and growth associated with East-Asian long range transportation observed at Fukue Island, Japan in March 2012. Atmospheric Environment, 2013, 74, 29-36.	4.1	13
348	Preparation of Polyacrylonitrile Nanofibers with Controlled Morphology Using a Constant-Current Electrospinning System for Filter Applications. Materials Science Forum, 0, 737, 159-165.	0.3	13
349	Photoluminescence optimization of BCNO phosphors synthesized using citric acid as a carbon source. Advanced Powder Technology, 2014, 25, 891-895.	4.1	13
350	Development of a method for testing very high-efficiency membrane filters for ultrafine aerosol particles Journal of Chemical Engineering of Japan, 1990, 23, 568-574.	0.6	12
351	Formation of CdS fine particles by spray-pyrolysis. Journal of Materials Science Letters, 1995, 14, 1388-1390.	0.5	12
352	Morphology Control of Films Formed by Atmospheric-Pressure Chemical Vapor Deposition Using Tetraethylorthosilicate/Ozone System. Japanese Journal of Applied Physics, 1996, 35, 4438-4443.	1.5	12
353	Electrical conduction in porous silicon: temperature dependence. Microelectronics Journal, 2000, 31, 187-191.	2.0	12
354	Change in particle size distribution of aerosol undergoing condensational growth: alternative analytical solution for the low Knudsen number regime. Journal of Aerosol Science, 2002, 33, 1297-1307.	3.8	12
355	Particle Formation and Trapping Behavior in a TEOS/O2Plasma and Their Effects on Contamination of a Si Wafer. Aerosol Science and Technology, 2004, 38, 120-127.	3.1	12
356	Quartz Crystal Microbalance for Silicon Surface Organic Contamination. Journal of the Electrochemical Society, 2005, 152, G241.	2.9	12
357	Modeling of and experiments on dust particle levitation in the sheath of a radio frequency plasma reactor. Journal of Applied Physics, 2005, 97, 043306.	2.5	12
358	Fabrication of porous nanostructured TiO2 particles by an aerosol templating method. Ultramicroscopy, 2008, 108, 1241-1245.	1.9	12
359	Controlled synthesis of carbon-based alumina nanophosphors with tunable blue-green luminescence. Materials Letters, 2010, 64, 836-839.	2.6	12
360	Strong metal-support interactions (SMSIs) between Pt and Ti3+ on Pt/TiOx nanoparticles for enhanced degradation of organic pollutant. Advanced Powder Technology, 2017, 28, 2987-2995.	4.1	12

#	Article	IF	Citations
361	EXPERIMENTAL STUDY OF THERMOPHORESIS OF AEROSOL PARTICLES. Journal of Chemical Engineering of Japan, 1976, 9, 147-152.	0.6	11
362	The effect of neighbouring fibers on the single fiber inertia-interception efficiency of aerosols Journal of Chemical Engineering of Japan, 1977, 10, 148-153.	0.6	11
363	Comparison among measuring methods of density of spherical aerosol particles Journal of Chemical Engineering of Japan, 1981, 14, 214-218.	0.6	11
364	Evaluation of the effect of nonsphericity of fine aggregate particles in brownian coagulation. Journal of Colloid and Interface Science, 1981, 81, 21-31.	9.4	11
365	Response of cigarette smoke particles to change in humidity Journal of Chemical Engineering of Japan, 1982, 15, 75-76.	0.6	11
366	Effects of aerosol particle deposition on the dynamic behavior of uniform or multilayer fibrous filters. Journal of Colloid and Interface Science, 1982, 88, 55-78.	9.4	11
367	A precise method to determine the diameter of airborne latex particles. Journal of Aerosol Science, 1988, 19, 501-509.	3.8	11
368	Preparation and Microstructure of ZnO Fine Particles by Ultrasonic Spray Pyrolysis Method Kagaku Kogaku Ronbunshu, 1992, 18, 288-295.	0.3	11
369	Film formation by motion control of ionized precursors in electric field. Applied Physics Letters, 1999, 75, 1973-1975.	3.3	11
370	One-step synthesis of the green phosphor Ce-Tb-Mg-Al-O system with spherical particle shape and fine size. Applied Physics A: Materials Science and Processing, 2001, 72, 103-105.	2.3	11
371	Effects of Mobility Changes and Distribution of Bipolar lons on Aerosol Nanoparticle Diffusion Charging. Journal of Chemical Engineering of Japan, 2005, 38, 486-496.	0.6	11
372	Development of a Photon Correlation Spectroscopy Instrument to Measure Size Distributions of Nanoparticles. Particle and Particle Systems Characterization, 2006, 23, 188-192.	2.3	11
373	Flame Spray Pyrolysis for Preparing Red-Light-Emitting, Submicron-Sized Luminescent Strontium Titanate Particles. Japanese Journal of Applied Physics, 2006, 45, 967-973.	1.5	11
374	Sintering behavior of spherical aggregated nanoparticles prepared by spraying colloidal precursor in a heated flow. Advanced Powder Technology, 2009, 20, 318-326.	4.1	11
375	Importance of dispersibility of TiO2 in preparation of TiO2-dispersed microspheres by Shirasu porous glass (SPG) membrane emulsification. Advanced Powder Technology, 2009, 20, 361-365.	4.1	11
376	Agglomeration-free core-shell polystyrene/silica particles preparation using an electrospray method and additive-free cationic polystyrene core. Materials Letters, 2013, 91, 161-164.	2.6	11
377	Heat-treated Escherichia coli as a high-capacity biosorbent for tungsten anions. Bioresource Technology, 2016, 218, 140-145.	9.6	11
378	Development of an LDMA-FCE System for the Measurement of Submicron Aerosol Particles. Journal of Chemical Engineering of Japan, 2005, 38, 34-44.	0.6	11

#	Article	IF	CITATIONS
379	Preparation of ultrafine haematite particles by oxidation of iron acetylacetonate vapour. Journal of Materials Science Letters, 1987, 6, 1466-1468.	0.5	10
380	Experimental evaluation of ion-induced nucleation in nanometeraerosol formation by α-ray radiolysis of SO2/H2O/N2 mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 109, 39-48.	4.7	10
381	In situ observation of UF 5 nanoparticle growth in a low-pressure mixed-flow reactor. Applied Physics A: Materials Science and Processing, 1999, 68, 75-80.	2.3	10
382	REMOVAL OF AIRBORNE PARTICLES BY A DEVICE USING UV/PHOTOELECTRON METHOD UNDER REDUCED PRESSURE CONDITIONS. Journal of Aerosol Science, 1999, 30, 341-353.	3.8	10
383	Observation and evaluation of flaked particle behavior in magnetically enhanced reactive ion etching equipment using a dipole ring magnet. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1688.	1.6	10
384	Suppression of particle generation in a plasma process using a sine-wave modulated rf plasma. Journal of Nanoparticle Research, 2006, 8, 395-403.	1.9	10
385	Facile Method for the Fabrication of Vertically Aligned ITO Nanopillars with Excellent Properties. Chemistry of Materials, 2009, 21, 4087-4089.	6.7	10
386	Rapid <i>In Situ</i> Synthesis of Spherical Microflower Pt/C Catalyst <i>Via</i> Sprayâ€drying for High Performance Fuel Cell Application. Fuel Cells, 2012, 12, 665-669.	2.4	10
387	Synthesis and photoluminescence of BCNO/SiO2 nanocomposite phosphor materials. Journal of Luminescence, 2014, 148, 165-168.	3.1	10
388	Low-Energy Bead-Mill Dispersion of Agglomerated Core–Shell α-Fe/Al ₂ O ₃ and α″-Fe ₁₆ N ₂ /Al ₂ O ₃ Ferromagnetic Nanoparticles in Toluene. Langmuir, 2015, 31, 6011-6019.	3.5	10
389	Preparation and evaluation of magnetic nanocomposite fibers containingα″-Fe16N2andα-Fe nanoparticles in polyvinylpyrrolidone via magneto-electrospinning. Nanotechnology, 2016, 27, 025601.	2.6	10
390	Facile fabrication of carbon nanotube forest-like films via coaxial electrospray. Carbon, 2017, 115, 116-119.	10.3	10
391	Physical meaning and evaluation of dynamic shape factor of aggregate particles. Journal of Colloid and Interface Science, 1981, 84, 91-99.	9.4	9
392	The dynamic behavior of charged aerosols. Journal of Colloid and Interface Science, 1989, 133, 57-65.	9.4	9
393	Preparation of micro-controlled particles usingaerosol process. Journal of Aerosol Science, 1991, 22, S7-S10.	3.8	9
394	Metal-to-semiconductor transition in nanocrystals: size and temperature dependence. Microelectronics Journal, 2000, 31, 343-351.	2.0	9
395	Numerical Simulations of Films Formed by Cluster/Particle Co-Deposition in Atmospheric-Pressure Chemical Vapor Deposition Process Using Organic Silicon Vapors and Ozone Gas. Japanese Journal of Applied Physics, 2000, 39, 3542-3548.	1.5	9
396	Temperature-dependent electrical conduction in porous silicon: Non-Arrhenius behavior. Europhysics Letters, 2001, 54, 234-240.	2.0	9

#	Article	IF	CITATIONS
397	Title is missing!. Journal of Nanoparticle Research, 2001, 3, 149-156.	1.9	9
398	Fabrication of Reference Filter for Measurements of EC (Elemental Carbon) and OC (Organic Carbon) in Aerosol Particles. Aerosol Science and Technology, 2007, 41, 284-294.	3.1	9
399	Morphology-controlled synthesis of chromia–titania nanofibers via electrospinning followed by annealing. Materials Chemistry and Physics, 2009, 116, 169-174.	4.0	9
400	In situ growth of Pt nanoparticles on electrospun SnO2 fibers for anode electrocatalyst application. Materials Letters, 2013, 105, 202-205.	2.6	9
401	Influence of formic acid on electrochemical properties of highâ€porosity Pt/TiN nanoparticle aggregates. AICHE Journal, 2013, 59, 2753-2760.	3.6	9
402	Preparation and characterization of magnetic films of well-dispersed single domain of core–shell α″-Fe16N2/Al2O3 nanoparticles. Advanced Powder Technology, 2015, 26, 1618-1623.	4.1	9
403	Selective, high efficiency reduction of CO2 in a non-diaphragm-based electrochemical system at low applied voltage. RSC Advances, 2015, 5, 9278-9282.	3.6	9
404	Role of Acetone in the Formation of Highly Dispersed Cationic Polystyrene Nanoparticles. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2017, 38, 5-18.	0.7	9
405	Electrostatic dispersion of aerosol particles carrying unipolar charge Journal of Chemical Engineering of Japan, 1985, 18, 502-509.	0.6	8
406	Novel Method for Coating Magnetic Iron Oxide Particles with Carbon Black. Journal of the American Ceramic Society, 2000, 83, 2901-2906.	3.8	8
407	Thermal Conditions in Rapid Thermal Processing System Using Circular Infrared Lamp. Journal of the Electrochemical Society, 2000, 147, 4660.	2.9	8
408	Adsorption and Desorption of Dibutyl Phthalate on Si Surface Measured in Controlled Atmosphere using Quartz Crystal Microbalance Method. Japanese Journal of Applied Physics, 2004, 43, 2661-2666.	1.5	8
409	Size Measurement of Polystyrene Latex Particles Larger than 1 Micrometer using a Long Differential Mobility Analyzer. Aerosol Science and Technology, 2004, 38, 1178-1184.	3.1	8
410	Novel Processing for Softly Agglomerated Luminescent Y2O3: Eu3+ Nanoparticles Using Polymeric Precursors. Journal of the Ceramic Society of Japan, 2005, 113, 97-100.	1.3	8
411	Aerial observation of nitrogen compounds over the East China Sea in 2009 and 2010. Atmospheric Environment, 2014, 97, 462-470.	4.1	8
412	Simple, Rapid, and Environmentally Friendly Method for Selectively Recovering Tantalum by Guanidine-Assisted Precipitation. ACS Sustainable Chemistry and Engineering, 2018, 6, 9585-9590.	6.7	8
413	Simple Evaluation Method of Bipolar Diffusion Charging of Aerosol Particles and Its Application to Smoke Detectors. Aerosol Science and Technology, 1987, 7, 217-229.	3.1	7
414	Determination of the Critical Supersaturation Ratio in Heterogeneous Nucleation of Benzene Vapor on a Cold Substrate Journal of Chemical Engineering of Japan, 1992, 25, 139-146.	0.6	7

#	Article	IF	Citations
415	Heterogeneous nucleation of organic vapours on a cold substrate. Canadian Journal of Chemical Engineering, 1993, 71, 238-243.	1.7	7
416	Fine particulate contaminant control by the UV/photoelectron method under a low pressure condition. Review of Scientific Instruments, 1995, 66, 5348-5351.	1.3	7
417	Film Formation by a New Chemical Vapor Deposition Process Using Ionization of Tetraethylorthosilicate. Japanese Journal of Applied Physics, 1995, 34, L1148-L1150.	1.5	7
418	Preparation of Ultraviolet Shielding Composite Fine Particles by the Spray Dry Method and Their Optical Properties Kagaku Kogaku Ronbunshu, 1997, 23, 237-242.	0.3	7
419	Electrical conduction in solid polymer electrolytes: temperature dependence mechanism. Microelectronics Journal, 2000, 31, 261-265.	2.0	7
420	Mechanical effect on the electronic properties of molecular wires. Physical Review B, 2000, 61, 8224-8232.	3.2	7
421	Preparation of Agglomerate-Free and Highly Crystalline (Ba0.5, Sr0.5)TiO3 Nanoparticles by Salt-Assisted Spray Pyrolysis. Journal of the Ceramic Society of Japan, 2003, 111, 815-820.	1.3	7
422	High-concentration Transparent TiO2 Nanocomposite Films Prepared from TiO2 Nanoslurry Dispersed by Using Bead Mill. Polymer Journal, 2008, 40, 694-699.	2.7	7
423	Ion-induced nucleation rate measurement in SO2/H2O/N2 gas mixture by soft X-ray ionization at various pressures and temperatures. Advanced Powder Technology, 2013, 24, 143-149.	4.1	7
424	Microwave-Assisted Solid State Synthesis of Red-Emitting BCNO Phosphor and its Characteristics. Advanced Materials Research, 0, 896, 464-467.	0.3	7
425	Facile synthesis of spherical carbon composite particles via a dry granulation process. Carbon, 2015, 94, 439-447.	10.3	7
426	Improvement of light scattering capacity in dye-sensitized solar cells by doping with SiO2 nanoparticles. Journal of Power Sources, 2016, 327, 96-103.	7.8	7
427	Aligned Fe3O4 magnetic nanoparticle films by magneto-electrospray method. RSC Advances, 2017, 7, 40124-40130.	3.6	7
428	Influence of Synthesis Conditions on the Characteristics of Nanoparticles Produced in a Nonequilibrium Plasma Field. Journal of Chemical Engineering of Japan, 2008, 41, 62-68.	0.6	7
429	Coagulation and deposition of aerosol particles in a flow type chamber. Journal of Aerosol Science, 1980, 11, 11-22.	3.8	6
430	Diffusion charging of ultrafine aerosol particles by bipolar ions of unequal concentrations Journal of Chemical Engineering of Japan, 1986, 19, 214-221.	0.6	6
431	Growth of UF5 nanoparticles formed by laser photolysis in a supersonic nozzle reactor. Journal of Aerosol Science, 1998, 29, 1027-1033.	3.8	6
432	Model of boron incorporation into silicon epitaxial film in a B2H6–SiHCl3–H2 system. Journal of Crystal Growth, 2001, 222, 183-193.	1.5	6

#	Article	IF	CITATIONS
433	Numerical Evaluation of the Transfer Function of a Low Pressure DMA by Using the Langevin Dynamic Equation. Aerosol Science and Technology, 2005, 39, 701-712.	3.1	6
434	Photoluminescence Properties of Submicrometer Phosphors with Different Crystallite/Particle Sizes. Japanese Journal of Applied Physics, 2008, 47, 7220-7223.	1.5	6
435	Analysis of fluid permeation through a particle-packed layer using an electric resistance network as an analogy. Powder Technology, 2009, 191, 39-46.	4.2	6
436	Preparation of Nanocomposite Microspheres Containing High Concentration of TiO2 Nanoparticles via Bead Mill Dispersion in Organic Solvent. Chemistry Letters, 2009, 38, 448-449.	1.3	6
437	Behavior of aerosols undergoing brownian coagulation, brownian diffusion and gravitational settling in a closed chamber Journal of Chemical Engineering of Japan, 1976, 9, 140-146.	0.6	5
438	Experimental study of nucleation on ions with DBP vapor. Journal of Aerosol Science, 1991, 22, S85-S88.	3.8	5
439	Reply to â€~â€~Comment on â€~Transient kinetics of nucleation' ''. Physical Review A, 1991, 44, 8443	-8 4\$ 5.	5
440	Observation of Adsorption Phenomena of Dibutyl Phthalate Molecules on Si Surface Using Quartz Crystal Microbalance Method. Japanese Journal of Applied Physics, 2004, 43, 5496-5500.	1.5	5
441	Simultaneous Observation of Molecular Contamination Behavior in Semiconductor Clean room Using Quartz Crystal Microbalance. Japanese Journal of Applied Physics, 2004, 43, 4135-4140.	1.5	5
442	Observation of Heat-Induced Particle Resuspension and Transport in a Plasma Chemical Vapor Deposition Chamber. Japanese Journal of Applied Physics, 2005, 44, 4871-4877.	1.5	5
443	Removal of particles during plasma processes using a collector based on the properties of particles suspended in the plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 388-393.	2.1	5
444	Technology Innovation in the Nanoparticle Project. KONA Powder and Particle Journal, 2007, 25, 237-243.	1.7	5
445	Change in Characteristics of Titania Nanoparticles during the Process of Dispersion, Agglomeration and Re-Dispersion with a Dual-Axis Beads-Mill. Kagaku Kogaku Ronbunshu, 2013, 39, 426-432.	0.3	5
446	Effect of Gas Atmosphere on Graphitization of Carbon Powder. Kagaku Kogaku Ronbunshu, 2014, 40, 12-17.	0.3	5
447	Comparison between theory and experiment in dendritic aerosol deposition. a revision. Journal of Aerosol Science, 1981, 12, 269-274.	3.8	4
448	Preparation of superconducting fine particles in the Bi-(Pb)-Ca-Sr-Cu-O system using the spray-pyrolysis method. Journal of Materials Science: Materials in Electronics, 1990, 1, 46-48.	2.2	4
449	Experimental study of aerosol deposition in stirred flow fields ranging from laminar to turbulent flows Journal of Chemical Engineering of Japan, 1991, 24, 203-209.	0.6	4
450	Preparation of Bi-Pb-Ca-Sr-Cu-O Superconducting Thick Films Using Spray-Pyrolyzed Fine Powders. Japanese Journal of Applied Physics, 1991, 30, 952-953.	1.5	4

#	Article	IF	CITATIONS
451	Heterogeneous nucleation characteristics of mixed vapor of benzene and cyclohexane on a cold substrate Journal of Chemical Engineering of Japan, 1993, 26, 173-178.	0.6	4
452	Chemical Reaction Kinetics and Growth Rate of (Ba, Sr) TiO[sub 3] Films Prepared by Liquid Source Chemical Vapor Deposition. Journal of the Electrochemical Society, 2000, 147, 2581.	2.9	4
453	The Influence of the Synthetic Conditions of Chemical Vapor Synthesis on the Size of Gallium Nitride Nanoparticles. Journal of Chemical Engineering of Japan, 2005, 38, 516-519.	0.6	4
454	Incorporation of Dust Particles into a Growing Film During Silicon Dioxide Deposition from a TEOS/O2Plasma. Aerosol Science and Technology, 2005, 39, 408-414.	3.1	4
455	Continuous Size Classification of Nanoparticles Utilizing Brownian Motion in Microchannel Size Exclusion Chromatography. Particle and Particle Systems Characterization, 2007, 24, 424-430.	2.3	4
456	Pore size-controlled synthesis and characterization of nanostructured silica particles. Ultramicroscopy, 2008, 108, 1260-1265.	1.9	4
457	Perpendicular easy axis alignment of FePt nanoparticles on a platinum-(001) buffer layer for high-density magnetic recording. Journal of Applied Physics, 2011, 110, 083906.	2.5	4
458	Technique for aerosol flow check in differential mobility analyzer and its imfluence on classification performance Journal of Chemical Engineering of Japan, 1997, 30, 1065-1069.	0.6	4
459	Measurement of Trapping Behavior of Dust Particles During Plasma Process by Suck-Out Method. Kagaku Kogaku Ronbunshu, 2003, 29, 513-520.	0.3	4
460	Morphology-Controlled Synthesis of Electrospun Nanofibers and Their Application for Aerosol Filtration. Kagaku Kogaku Ronbunshu, 2014, 40, 84-89.	0.3	4
461	The Formation of Ultrafine Particles of Metal Sulfide by the Electrostatic Spray Pyrolysis Method [Translated] < sup > â € < /sup > . KONA Powder and Particle Journal, 1997, 15, 227-234.	1.7	4
462	Estimation of the drag forces acting on particle dendrites. Journal of Colloid and Interface Science, 1981, 82, 543-559.	9.4	3
463	Observations of heterogeneous nucleation of water vapor on a cold substrate Journal of Chemical Engineering of Japan, 1992, 25, 448-450.	0.6	3
464	Diffusive deposition of submicrometer aerosol particles onto dielectric walls with a nonuniform surface charge distribution. Journal of Colloid and Interface Science, 1992, 154, 255-263.	9.4	3
465	Size-dependence of properties of superconducting Bi-Ca-Sr-Cu-O fine particles prepared by a spray-pyrolysis method. Journal of Materials Science: Materials in Electronics, 1994, 5, 210.	2.2	3
466	Computation Transport Phenomena in Chemical Engineering. Transport of Dopant Gas during Silicon Epitaxial Thin-Film Growth in a Horizontal Reactor Kagaku Kogaku Ronbunshu, 1997, 23, 772-779.	0.3	3
467	Reduction of gaseous contamination by UV/photoelectron method. IEEE Transactions on Semiconductor Manufacturing, 1998, 11, 9-12.	1.7	3
468	Recent Development in Chemical Reaction Engineering Utilizing Light and Active Species. Effects of NO2 Gas on Gas-to-Particle Conversion of SO2 by .ALPHARay Radiolysis Kagaku Kogaku Ronbunshu, 1999, 25, 868-872.	0.3	3

#	Article	IF	CITATIONS
469	Spray Pyrolysis Synthesis and Evaluation of Fine Bimetallic Au-Pd Particles. Journal of the Ceramic Society of Japan, 2004, 112, 405-408.	1.3	3
470	Control of Particle Morphology from Porous to Hollow by Spray-Drying with a Two-Fluid Nozzle and Template Materials. Kagaku Kogaku Ronbunshu, 2007, 33, 468-475.	0.3	3
471	Experimental evaluation of the pressure and temperature dependence of ion-induced nucleation. Journal of Chemical Physics, 2010, 133, 124315.	3.0	3
472	Doughnut magnesium fluoride nanoparticles prepared by an electron-beam irradiation method. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	3
473	Preparation and characterization of boron oxide-based red-emitting phosphors using Eu, Al and Ca additives. Materials Chemistry and Physics, 2012, 133, 392-397.	4.0	3
474	High production of CH4 and H2 by reducing PET waste water using a non-diaphragm-based electrochemical method. Scientific Reports, 2016, 6, 20512.	3.3	3
475	Effects of brownian coagulation and brownian diffusion on fine particle size analysis by sedimentation method Journal of Chemical Engineering of Japan, 1977, 10, 46-53.	0.6	2
476	Stability of fine water droplet clouds. Journal of Aerosol Science, 1978, 9, 489-504.	3.8	2
477	Dendritic deposition of uncharged aerosol particles on an uncharged fiber in the presence of an electrical field. Chemical Engineering Science, 1983, 38, 447-467.	3.8	2
478	Evaluation of fine particle formation by CVD in laminar-flow aerosol reactor Kagaku Kogaku Ronbunshu, 1990, 16, 526-534.	0.3	2
479	Determining the phase transition of condensate formed by heterogeneous nucleation of condensable vapors onto a cold substrate Journal of Chemical Engineering of Japan, 1994, 27, 284-290.	0.6	2
480	Experiment and Simulation of Styrene Polymerization in a Laminar Tubular Reactor Kagaku Kogaku Ronbunshu, 1996, 22, 907-915.	0.3	2
481	Free Molecular Flow Through a Conduit with an Orifice Journal of Chemical Engineering of Japan, 1997, 30, 38-44.	0.6	2
482	CVD Material Processing. Nanometer-Sized Silver Particle Measurements by Low Pressure Differential Mobility Analyzer and its Classification Performance Kagaku Kogaku Ronbunshu, 2000, 26, 776-784.	0.3	2
483	CVD Material Processing. Numerical Calculations of Heat Profile using Circular Infrared Lamp Heating Furnace Kagaku Kogaku Ronbunshu, 2000, 26, 785-791.	0.3	2
484	In-situ monitoring of UF 5 nanoparticle growth in a plug-flow reactor by a low-pressure differential mobility analyzer. Applied Physics A: Materials Science and Processing, 2002, 74, 513-517.	2.3	2
485	Enhanced magnetic performance of aligned wires assembled from nanoparticles: from nanoscale to macroscale. Royal Society Open Science, 2020, 7, 191656.	2.4	2
486	Synthesis of Spherical Graphitized Carbon Powder with Homolytic Crystals by a Dry Granulation Process. Kagaku Kogaku Ronbunshu, 2014, 40, 234-239.	0.3	2

#	Article	IF	Citations
487	Experimental Control of Preparation of Thin Film and Fine Particles by CVD [Translated] < sup >â € < /sup >. KONA Powder and Particle Journal, 1991, 9, 59-71.	1.7	2
488	EFFECT OF BROWNIAN COAGULATION AND BROWNIAN DIFFUSION ON GRAVITATIONAL SETTLING OF POLYDISPERSE AEROSOLS. Journal of Chemical Engineering of Japan, 1975, 8, 137-142.	0.6	1
489	The effect of electrically charged dielectric walls on the diffusive deposition of submicron aerosol particles. Journal of Aerosol Science, 1992, 23, 711-721.	3.8	1
490	Heterogeneous Nucleation Characteristics of a Eutectic-Forming Vapor Mixture on a Cold Substrate. Separation Science and Technology, 1994, 29, 1823-1840.	2.5	1
491	Molecular Flow Analysis in Orifice-Containing Tube Using Maxwellian Distribution Function Journal of Chemical Engineering of Japan, 1997, 30, 946-948.	0.6	1
492	Recent Development in Chemical Reaction Engineering Utilizing Light and Active Species Kagaku Kogaku Ronbunshu, 1999, 25, 878-883.	0.3	1
493	Distribution of Molecular Number Density on Conduit Wall in free Molecular Flow through Conduit with Orifice-Restricted Exit Kagaku Kogaku Ronbunshu, 2000, 26, 76-80.	0.3	1
494	One-step Preparation of BaTiO3 Nanoparticles by Liquid Source Chemical Vapor Deposition. Journal of Chemical Engineering of Japan, 2004, 37, 454-460.	0.6	1
495	A Free Molecular Flow Characteristic through a Conduit with an Orifice-Restricted Exit Shinku/Journal of the Vacuum Society of Japan, 1998, 41, 581-583.	0.2	1
496	Growth of aerosol particles by adiabatic expansion at the throat of a venturi scrubber. Chemical Engineering Science, 1980, 35, 1107-1111.	3.8	0
497	Reply to the comments on "Significance of the coagulation factor in studies on Brownian coagulation―by W. O. Schikarski. Journal of Colloid and Interface Science, 1987, 118, 300.	9.4	0
498	A Theoretical Evaluation of Liquid Condensate Formation by Heterogeneous Nucleation from a Benzene and Cyclohexane Vapor Mixture Journal of Chemical Engineering of Japan, 1994, 27, 249-253.	0.6	0
499	Simulation of a transient heterogeneous phase transition Journal of Chemical Engineering of Japan, 1995, 28, 456-461.	0.6	0
500	Computation Transport Phenomena in Chemical Engineering. Experiment and Numerical Simulation on the Effect of Solvent on Styrene Polymerization Process Using a Laminar Tubular Reactor Kagaku Kogaku Ronbunshu, 1997, 23, 796-803.	0.3	0
501	CVD Material Processing. Effects of Pressure and Gas Feed Rate on Growth Rate Profile of GaN Thin Film in Vertical MOCVD Reactor Kagaku Kogaku Ronbunshu, 2000, 26, 804-810.	0.3	0
502	Focus on Research in Nanoparticle in Asia. Journal of Nanoparticle Research, 2001, 3, 111-111.	1.9	0
503	Title is missing!. Journal of Nanoparticle Research, 2002, 4, 571-573.	1.9	0
504	International Symposium on 'Nanoparticles: Aerosols and Materials,' Pusan, Korea, July 5–6, 2001. Journal of Nanoparticle Research, 2003, 5, 573-576.	1.9	0

KIKUO OKUYAMA

#	Article	IF	CITATIONS
505	2006 FUCHS memorial award recipients. Journal of Aerosol Science, 2007, 38, 370-372.	3.8	0
506	Molecular Flow Analysis in Orifice-Restricted Tube Using Maxwellian Distribution Function Journal of Chemical Engineering of Japan, 2000, 33, 891-893.	0.6	0
507	Preparation of Fine Particles of Superconducting Oxide by Aerosol Reactor [Translated] < sup > â € < /sup > . KONA Powder and Particle Journal, 1990, 8, 4-11.	1.7	0