
## Nathan R Zaccai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102234/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Strikingly Different Roles of SARS-CoV-2 Fusion Peptides Uncovered by Neutron Scattering. Journal of the American Chemical Society, 2022, 144, 2968-2979.                                                                | 13.7 | 30        |
| 2  | FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P <sub>2</sub> -dependent<br>switch. Science Advances, 2022, 8, eabn2018.                                                                        | 10.3 | 14        |
| 3  | Structures of a deAMPylation complex rationalise the switch between antagonistic catalytic activities of FICD. Nature Communications, 2021, 12, 5004.                                                                    | 12.8 | 13        |
| 4  | Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nature Communications, 2020, 11, 5031.                                                                                         | 12.8 | 21        |
| 5  | Navigating the Structural Landscape of De Novo α-Helical Bundles. Journal of the American Chemical<br>Society, 2019, 141, 8787-8797.                                                                                     | 13.7 | 42        |
| 6  | Downsizing Proto-oncogene cFos to Short Helix-Constrained Peptides That Bind Jun. ACS Chemical Biology, 2017, 12, 2051-2061.                                                                                             | 3.4  | 43        |
| 7  | Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. Journal of Cell<br>Biology, 2017, 216, 2927-2943.                                                                                | 5.2  | 35        |
| 8  | A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion.<br>Scientific Reports, 2016, 6, 38399.                                                                                  | 3.3  | 54        |
| 9  | Structural Basis of the Mispairing of an Artificially Expanded Genetic Information System. CheM, 2016, 1, 946-958.                                                                                                       | 11.7 | 17        |
| 10 | Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How<br>Skp Captures and Releases Unfolded Outer Membrane Proteins. Methods in Enzymology, 2016, 566,<br>159-210.             | 1.0  | 46        |
| 11 | Modular Design of Self-Assembling Peptide-Based Nanotubes. Journal of the American Chemical<br>Society, 2015, 137, 10554-10562.                                                                                          | 13.7 | 137       |
| 12 | Skp Trimer Formation Is Insensitive to Salts in the Physiological Range. Biochemistry, 2015, 54, 7059-7062.                                                                                                              | 2.5  | 20        |
| 13 | Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and<br>BamA. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111,<br>5878-5883. | 7.1  | 164       |
| 14 | Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4285-4290.            | 7.1  | 104       |
| 15 | A Basis Set of <i>de Novo</i> Coiled-Coil Peptide Oligomers for Rational Protein Design and Synthetic<br>Biology. ACS Synthetic Biology, 2012, 1, 240-250.                                                               | 3.8  | 226       |
| 16 | Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13266-13271.             | 7.1  | 70        |
| 17 | FKBP12 Activates the Cardiac Ryanodine Receptor Ca2+-Release Channel and Is Antagonised by FKBP12.6.<br>PLoS ONE, 2012, 7, e31956.                                                                                       | 2.5  | 56        |
| 18 | A de novo peptide hexamer with a mutable channel. Nature Chemical Biology, 2011, 7, 935-941.                                                                                                                             | 8.0  | 172       |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Correlation of in situ mechanosensitive responses of the <i>Moraxella catarrhalis</i> adhesin UspA1<br>with fibronectin and receptor CEACAM1 binding. Proceedings of the National Academy of Sciences of<br>the United States of America, 2011, 108, 15174-15178. | 7.1  | 28        |
| 20 | Crystal structure of a 3â€oxoacylâ€(acylcarrier protein) reductase (BA3989) from <i>Bacillus<br/>anthracis</i> at 2.4â€Ã resolution. Proteins: Structure, Function and Bioinformatics, 2008, 70, 562-567.                                                         | 2.6  | 22        |
| 21 | Single-Channel Characterization of the Rabbit Recombinant RyR2 Reveals a Novel Inactivation Property of Physiological Concentrations of ATP. Journal of Membrane Biology, 2008, 222, 65-77.                                                                       | 2.1  | 11        |
| 22 | Intrinsic fluorescence as an analytical probe of virus-like particle assembly and maturation.<br>Biochemical and Biophysical Research Communications, 2008, 375, 351-355.                                                                                         | 2.1  | 11        |
| 23 | Crystallographic and in Silico Analysis of the Sialoside-binding Characteristics of the Siglec<br>Sialoadhesin. Journal of Molecular Biology, 2007, 365, 1469-1479.                                                                                               | 4.2  | 30        |
| 24 | Refolding of a membrane protein in a microfluidics reactor. European Biophysics Journal, 2007, 36, 581-588.                                                                                                                                                       | 2.2  | 7         |
| 25 | Application of high-throughput technologies to a structural proteomics-type analysis ofBacillus<br>anthracis. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1267-1275.                                                                  | 2.5  | 24        |
| 26 | Assembly of Human Papillomavirus Type-16 Virus-Like Particles: Multifactorial Study of Assembly and Competing Aggregation. Biotechnology Progress, 2006, 22, 554-560.                                                                                             | 2.6  | 32        |
| 27 | The Crystal Structure of Human CD1b with a Bound Bacterial Glycolipid. Journal of Immunology, 2004, 172, 2382-2388.                                                                                                                                               | 0.8  | 137       |
| 28 | Structure-Guided Design of Sialic Acid-Based Siglec Inhibitors and Crystallographic Analysis in Complex with Sialoadhesin. Structure, 2003, 11, 557-567.                                                                                                          | 3.3  | 97        |
| 29 | Generation of CD1 tetramers as a tool to monitor glycolipid–specific T cells. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2003, 358, 875-877.                                                                                      | 4.0  | 12        |
| 30 | CD4 T Cells Selected by Antigen Under Th2 Polarizing Conditions Favor an Elongated TCRα Chain<br>Complementarity-Determining Region 3. Journal of Immunology, 2002, 168, 1018-1027.                                                                               | 0.8  | 17        |
| 31 | Structure of human CD1b with bound ligands at 2.3 Ã, a maze for alkyl chains. Nature Immunology,<br>2002, 3, 721-726.                                                                                                                                             | 14.5 | 234       |
| 32 | Killer Cell Immunoglobulin Receptors and T Cell Receptors Bind Peptide-Major Histocompatibility<br>Complex Class I with Distinct Thermodynamic and Kinetic Properties. Journal of Biological Chemistry,<br>1999, 274, 28329-28334.                                | 3.4  | 110       |
| 33 | HLA-B27 and disease pathogenesis: new structural and functional insights. Expert Reviews in<br>Molecular Medicine, 1999, 1, 1-10.                                                                                                                                 | 3.9  | 10        |
| 34 | Strikingly different roles of SARS-CoV-2 fusion peptides uncovered by SNR, SANS, QENS, and NSE experiments. Neutron News, 0, , 1-2.                                                                                                                               | 0.2  | 0         |