
Adam B Salmon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3102034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapamycin-Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled from Longevity. Science, 2012, 335, 1638-1643.	12.6	1,022
2	Rapamycinâ€mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell, 2014, 13, 468-477.	6.7	486
3	Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17787-17792.	7.1	449
4	Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3059-3064.	7.1	368
5	Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging?. Free Radical Biology and Medicine, 2010, 48, 642-655.	2.9	367
6	Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an αâ€glucosidase inhibitor or a Nrf2â€inducer. Aging Cell, 2016, 15, 872-884.	6.7	277
7	Increased superoxide <i>in vivo</i> accelerates ageâ€associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB Journal, 2010, 24, 1376-1390.	0.5	250
8	Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models?. Free Radical Biology and Medicine, 2012, 52, 46-58.	2.9	234
9	Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E23-E29.	3.5	224
10	Multiplex stress resistance in cells from longâ€lived dwarf mice. FASEB Journal, 2003, 17, 1565-1576.	0.5	200
11	Overexpression of Mn Superoxide Dismutase Does Not Increase Life Span in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1114-1125.	3.6	178
12	Skinâ€derived fibroblasts from longâ€lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell, 2007, 6, 1-13.	6.7	135
13	Mice Fed Rapamycin Have an Increase in Lifespan Associated with Major Changes in the Liver Transcriptome. PLoS ONE, 2014, 9, e83988.	2.5	132
14	Reduction of mitochondrial H ₂ O ₂ by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell, 2008, 7, 866-878.	6.7	129
15	Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB Journal, 2009, 23, 3601-3608.	0.5	121
16	Fibroblasts From Naked Mole-Rats Are Resistant to Multiple Forms of Cell Injury, But Sensitive to Peroxide, Ultraviolet Light, and Endoplasmic Reticulum Stress. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 232-241.	3.6	112
17	The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB Journal, 2009, 23, 2317-2326.	0.5	106
18	Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging. Aging, 2017, 9, 583-599.	3.1	102

Adam B Salmon

#	Article	IF	CITATIONS
19	Metabolic effects of intraâ€abdominal fat in GHRKO mice. Aging Cell, 2012, 11, 73-81.	6.7	97
20	A cost of reproduction: oxidative stress susceptibility is associated with increased egg production in Drosophila melanogaster. Experimental Gerontology, 2001, 36, 1349-1359.	2.8	89
21	Stress resistance and aging: Influence of genes and nutrition. Mechanisms of Ageing and Development, 2006, 127, 687-694.	4.6	75
22	Nox2 Mediates Skeletal Muscle Insulin Resistance Induced by a High Fat Diet. Journal of Biological Chemistry, 2015, 290, 13427-13439.	3.4	63
23	Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging, 2014, 6, 742-754.	3.1	62
24	Revisiting an age-old question regarding oxidative stress. Free Radical Biology and Medicine, 2014, 71, 368-378.	2.9	59
25	Short-Term Treatment With Rapamycin and Dietary Restriction Have Overlapping and Distinctive Effects in Young Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 108-116.	3.6	56
26	The paradoxical role of thioredoxin on oxidative stress and aging. Archives of Biochemistry and Biophysics, 2015, 576, 32-38.	3.0	54
27	Oxidative damage associated with obesity is prevented by overexpression of CuZn- or Mn-superoxide dismutase. Biochemical and Biophysical Research Communications, 2013, 438, 78-83.	2.1	51
28	Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight, 2020, 5, .	5.0	51
29	Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice. Archives of Biochemistry and Biophysics, 2015, 576, 39-48.	3.0	48
30	Testing Efficacy of Administration of the Antiaging Drug Rapamycin in a Nonhuman Primate, the Common Marmoset. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 577-588.	3.6	47
31	Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix) Tj ETQq1	1	.4 rgBT /Over
32	Mice Producing Reduced Levels of Insulin-Like Growth Factor Type 1 Display an Increase in Maximum, but not Mean, Life Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 410-419.	3.6	40
33	Reduced Coupling of Oxidative Phosphorylation In Vivo Precedes Electron Transport Chain Defects Due to Mild Oxidative Stress in Mice. PLoS ONE, 2011, 6, e26963.	2.5	39
34	Beyond Diabetes: Does Obesity-Induced Oxidative Stress Drive the Aging Process?. Antioxidants, 2016, 5, 24.	5.1	35
35	Genetic Disruption of SOD1 Gene Causes Glucose Intolerance and Impairs β-Cell Function. Diabetes, 2013, 62, 4201-4207.	0.6	34
36	Rapamycin and Dietary Restriction Induce Metabolically Distinctive Changes in Mouse Liver. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 410-420.	3.6	34

ADAM B SALMON

#	Article	IF	CITATIONS
37	Correlated resistance to glucose deprivation and cytotoxic agents in fibroblast cell lines from long-lived pituitary dwarf mice. Mechanisms of Ageing and Development, 2006, 127, 821-829.	4.6	32
38	Cells From Long-Lived Mutant Mice Exhibit Enhanced Repair of Ultraviolet Lesions. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 219-231.	3.6	32
39	Heightened Induction of Proapoptotic Signals in Response to Endoplasmic Reticulum Stress in Primary Fibroblasts from a Mouse Model of Longevity. Journal of Biological Chemistry, 2011, 286, 30344-30351.	3.4	32
40	Methionine sulfoxide reductase A affects insulin resistance by protecting insulin receptorfunction. Free Radical Biology and Medicine, 2013, 56, 123-132.	2.9	32
41	Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice. Aging, 2018, 10, 386-401.	3.1	32
42	About-face on the metabolic side effects of rapamycin. Oncotarget, 2015, 6, 2585-2586.	1.8	29
43	DNA methylation age analysis of rapamycin in common marmosets. GeroScience, 2021, 43, 2413-2425.	4.6	26
44	Pharmaceutical inhibition of mTOR in the common marmoset: effect of rapamycin on regulators of proteostasis in a non-human primate. Pathobiology of Aging & Age Related Diseases, 2016, 6, 31793.	1.1	25
45	Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: Enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radical Biology and Medicine, 2009, 46, 1109-1118.	2.9	24
46	Effects of transgenic methionine sulfoxide reductase A (MsrA) expression on lifespan and age-dependent changes in metabolic function in mice. Redox Biology, 2016, 10, 251-256.	9.0	24
47	Is Rapamycin a Dietary Restriction Mimetic?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 4-13.	3.6	24
48	Aging research using the common marmoset: Focus on aging interventions. Nutrition and Healthy Aging, 2019, 5, 97-109.	1.1	22
49	Oxidative stress in the etiology of age-associated decline in glucose metabolism. Longevity & Healthspan, 2012, 1, 7.	6.7	21
50	Dynamic differences in oxidative stress and the regulation of metabolism with age in visceral versus subcutaneous adipose. Redox Biology, 2015, 6, 401-408.	9.0	21
51	Moving toward â€~common' use of the marmoset as a non-human primate aging model. Pathobiology of Aging & Age Related Diseases, 2016, 6, 32758.	1.1	21
52	MsrA Overexpression Targeted to the Mitochondria, but Not Cytosol, Preserves Insulin Sensitivity in Diet-Induced Obese Mice. PLoS ONE, 2015, 10, e0139844.	2.5	18
53	Identification of Trigeminal Sensory Neuronal Types Innervating Masseter Muscle. ENeuro, 2021, 8, ENEURO.0176-21.2021.	1.9	17
54	Thioredoxin, oxidative stress, cancer and aging. Longevity & Healthspan, 2012, 1, 4.	6.7	16

ADAM B SALMON

#	Article	IF	CITATIONS
55	Evaluation of the pharmacokinetics of metformin and acarbose in the common marmoset. Pathobiology of Aging & Age Related Diseases, 2019, 9, 1657756.	1.1	15
56	Altered metabolism and resistance to obesity in long-lived mice producing reduced levels of IGF-I. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E545-E553.	3.5	14
57	Longâ€ŧerm treatment with the mTOR inhibitor rapamycin has minor effect on clinical laboratory markers in middleâ€aged marmosets. American Journal of Primatology, 2019, 81, e22927.	1.7	14
58	Reduction of glucose intolerance with high fat feeding is associated with anti-inflammatory effects of thioredoxin 1 overexpression in mice. Pathobiology of Aging & Age Related Diseases, 2012, 2, 17101.	1.1	11
59	Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions. GeroScience, 2018, 40, 269-278.	4.6	10
60	Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice. Scientific Reports, 2022, 12, 7300.	3.3	9
61	Beta-guanidinopropionic acid has age-specific effects on markers of health and function in mice. GeroScience, 2021, 43, 1497-1511.	4.6	7
62	Age and sex modify cellular proliferation responses to oxidative stress and glucocorticoid challenges in baboon cells. GeroScience, 2021, 43, 2067-2085.	4.6	5
63	Metabolic benefits of methionine restriction in adult mice do not require functional methionine sulfoxide reductase A (MsrA). Scientific Reports, 2022, 12, 5073.	3.3	5
64	San Antonio Nathan Shock Center: your one-stop shop for aging research. GeroScience, 2021, 43, 2105-2118.	4.6	4
65	Resilience to aging is a heterogeneous characteristic defined by physical stressors. Aging Pathobiology and Therapeutics, 2022, 4, 19-22.	0.5	2
66	TORwards a Victory Over Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1-3.	3.6	1
67	Beta-guanidinopropionic acid does not extend Drosophila lifespan. Biochemistry and Biophysics Reports, 2021, 27, 101040.	1.3	1
68	Exploring the Effect of Redox Enzyme Modulation on the Biology of Mouse Aging. , 2014, , 153-170.		1
69	Mitochondrial-targeted methionine sulfoxide reductase overexpression increases the production of oxidative stress in mitochondria from skeletal muscle Aging Pathobiology and Therapeutics, 2020, 2, 45-51.	0.5	1
70	Cellular resilience and baboon aging. Aging, 2021, 13, 24482-24484.	3.1	0