
Matthew J Cuneo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3101973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capturing snapshots of APE1 processing DNA damage. Nature Structural and Molecular Biology, 2015, 22, 924-931.	8.2	124
2	The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory. Journal of Applied Crystallography, 2018, 51, 242-248.	4.5	115
3	Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway. PLoS ONE, 2011, 6, e16292.	2.5	99
4	Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Research, 2021, 49, 2931-2945.	14.5	81
5	Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase β binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6805-6810.	7.1	67
6	The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source. Journal of Applied Crystallography, 2015, 48, 1302-1306.	4.5	64
7	The ubiquitin ligase adaptor SPOP in cancer. FEBS Journal, 2019, 286, 3946-3958.	4.7	57
8	The structural basis for partitioning of the XRCC1/DNA ligase III-α BRCT-mediated dimer complexes. Nucleic Acids Research, 2011, 39, 7816-7827.	14.5	56
9	Identification of cognate ligands for theEscherichia coli phnDprotein product and engineering of a reagentless fluorescent biosensor for phosphonates. Protein Science, 2006, 15, 1745-1751.	7.6	53
10	Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation. Biochemistry, 2017, 56, 2529-2532.	2.5	53
11	Der p 5 Crystal Structure Provides Insight into the Group 5 Dust Mite Allergens. Journal of Biological Chemistry, 2010, 285, 25394-25401.	3.4	52
12	Structural studies of the PARP-1 BRCT domain. BMC Structural Biology, 2011, 11, 37.	2.3	41
13	Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses. DNA Repair, 2013, 12, 774-785.	2.8	40
14	A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad. Science Advances, 2018, 4, eaas8667.	10.3	40
15	"To Be or Not to Be" Protonated: Atomic Details of Human Carbonic Anhydrase-Clinical Drug Complexes by Neutron Crystallography and Simulation. Structure, 2018, 26, 383-390.e3.	3.3	40
16	Structureâ€based design of robust glucose biosensors using a <i>Thermotoga maritima</i> periplasmic glucoseâ€binding protein. Protein Science, 2007, 16, 2240-2250.	7.6	39
17	Orthogonal site-specific protein modification by engineering reversible thiol protection mechanisms. Protein Science, 2009, 14, 64-73.	7.6	39
18	The Crystal Structure of a Thermophilic Glucose Binding Protein Reveals Adaptations that Interconvert Mono and Di-saccharide Binding Sites. Journal of Molecular Biology, 2006, 362, 259-270.	4.2	36

MATTHEW J CUNEO

#	Article	IF	CITATIONS
19	drtsans: The data reduction toolkit for small-angle neutron scattering at Oak Ridge National Laboratory. SoftwareX, 2022, 19, 101101.	2.6	32
20	Insight into the Solid Electrolyte Interphase Formation in Bis(fluorosulfonyl)Imide Based Ionic Liquid Electrolytes. Advanced Functional Materials, 2021, 31, 2008708.	14.9	30
21	Identification and Functional Characterization of a Novel Acetylcholine-Binding Protein from the Marine Annelid <i>Capitella teleta</i> . Biochemistry, 2010, 49, 2279-2287.	2.5	28
22	Structural Analysis of a Periplasmic Binding Protein in the Tripartite ATP-independent Transporter Family Reveals a Tetrameric Assembly That May Have a Role in Ligand Transport. Journal of Biological Chemistry, 2008, 283, 32812-32820.	3.4	27
23	Perturbation of bacteriochlorophyll molecules in Fenna–Matthews–Olson protein complexes through mutagenesis of cysteine residues. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1455-1463.	1.0	26
24	The Neutron Macromolecular Crystallography Instruments at Oak Ridge National Laboratory: Advances, Challenges, and Opportunities. Crystals, 2018, 8, 388.	2.2	26
25	Modulating Enzyme Activity by Altering Protein Dynamics with Solvent. Biochemistry, 2018, 57, 4263-4275.	2.5	26
26	Ligand-induced conformational changes in a thermophilic ribose-binding protein. BMC Structural Biology, 2008, 8, 50.	2.3	25
27	Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Nucleic Acids Research, 2014, 42, 5361-5377.	14.5	25
28	Structural Adaptations that Modulate Monosaccharide, Disaccharide, and Trisaccharide Specificities in Periplasmic Maltose-Binding Proteins. Journal of Molecular Biology, 2009, 389, 157-166.	4.2	24
29	Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. Nucleic Acids Research, 2011, 39, 623-634.	14.5	24
30	Protein extraction into the bicontinuous microemulsion phase of a Water/SDS/pentanol/dodecane winsor-III system: Effect on nanostructure and protein conformation. Colloids and Surfaces B: Biointerfaces, 2017, 160, 144-153.	5.0	24
31	Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold. Journal of Biological Chemistry, 2009, 284, 33217-33223.	3.4	22
32	Unencumbered Pol β lyase activity in nucleosome core particles. Nucleic Acids Research, 2017, 45, 8901-8915.	14.5	20
33	Differential Substrate Recognition by Maltose Binding Proteins Influenced by Structure and Dynamics. Biochemistry, 2018, 57, 5864-5876.	2.5	20
34	Lowâ€Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad. Angewandte Chemie - International Edition, 2019, 58, 16260-16266.	13.8	20
35	Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase. Biochemistry, 2010, 49, 2821-2833.	2.5	19
36	Structural characterization of the virulence factor Sda1 nuclease from <i>Streptococcus pyogenes</i> . Nucleic Acids Research, 2016, 44, 3946-3957.	14.5	19

MATTHEW J CUNEO

#	Article	IF	CITATIONS
37	Neutron crystallographic studies of T4 lysozyme at cryogenic temperature. Protein Science, 2017, 26, 2098-2104.	7.6	19
38	De novo design of a homo-trimeric amantadine-binding protein. ELife, 2019, 8, .	6.0	18
39	Duplication of Genes in an ATP-binding Cassette Transport System Increases Dynamic Range While Maintaining Ligand Specificity. Journal of Biological Chemistry, 2014, 289, 30090-30100.	3.4	14
40	Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding. Biochemistry, 2017, 56, 5328-5337.	2.5	14
41	On the Case of the Misplaced Hydrogens. ChemBioChem, 2021, 22, 288-297.	2.6	14
42	The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog. BMC Structural Biology, 2008, 8, 20.	2.3	11
43	Encoding of Promiscuity in an Aminoglycoside Acetyltransferase. Journal of Medicinal Chemistry, 2018, 61, 10218-10227.	6.4	11
44	Molecular details of ligand selectivity determinants in a promiscuous β-glucan periplasmic binding protein. BMC Structural Biology, 2013, 13, 18.	2.3	8
45	Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1448-1452.	0.8	8
46	Dynamic nuclear polarization enhanced neutron crystallography: Amplifying hydrogen in biological crystals. Methods in Enzymology, 2020, 634, 153-175.	1.0	8
47	Characterization of the Redox Transition of the XRCC1 N-terminal Domain. Structure, 2014, 22, 1754-1763.	3.3	6
48	A nucleotide-dependent oligomerization of the Escherichia coli replication initiator DnaA requires residue His136 for remodeling of the chromosomal origin. Nucleic Acids Research, 2019, 48, 200-211.	14.5	4
49	Binding of a Soluble <i>meso</i> -Tetraarylporphyrin to Human Galectin-7 Induces Oligomerization and Modulates Its Pro-Apoptotic Activity. Biochemistry, 2020, 59, 4591-4600.	2.5	4
50	Lowâ€Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad. Angewandte Chemie, 2019, 131, 16406-16412.	2.0	3
51	Neutron and X-ray analysis of the Fenna–Matthews–Olson photosynthetic antenna complex from <i>Prosthecochloris aestuarii</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 171-175.	0.8	3
52	Crystallization and preliminary X-ray diffraction analysis of <i>Hypocrea jecorina</i> Cel7A in two new crystal forms. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 773-776.	0.8	2
53	"Catch and Release†a Variation of the Archetypal Nucleotidyl Transfer Reaction. ACS Catalysis, 2020, 10, 3548-3555.	11.2	2
54	Oncogenic signaling of RTK fusions becomes more granular. Molecular Cell, 2021, 81, 2504-2506.	9.7	2

#	Article	IF	CITATIONS
55	Towards cryogenic neutron crystallography on the reduced form of [NiFe]-hydrogenase. Acta Crystallographica Section D: Structural Biology, 2020, 76, 946-953.	2.3	2
56	Oligomerization state and pigment binding strength of the peridininâ€Chl <i>a</i> â€protein. FEBS Letters, 2015, 589, 2713-2719.	2.8	1