
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/310174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews, 2010, 39, 3480.	38.1	599
2	Adsorption of Dodecyl Sulfate Surfactants with Monovalent Metal Counterions at the Air-Water Interface Studied by Neutron Reflection and Surface Tension. Journal of Colloid and Interface Science, 1993, 158, 303-316.	9.4	239
3	Membrane targeting cationic antimicrobial peptides. Journal of Colloid and Interface Science, 2019, 537, 163-185.	9.4	223
4	Strategies for enhancing fermentative production of acetoin: A review. Biotechnology Advances, 2014, 32, 492-503.	11.7	199
5	Antibacterial Activities of Short Designer Peptides: a Link between Propensity for Nanostructuring and Capacity for Membrane Destabilization. Biomacromolecules, 2010, 11, 402-411.	5.4	182
6	Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Physical Biology, 2007, 4, 220-227.	1.8	164
7	A technical review of face mask wearing in preventing respiratory COVID-19 transmission. Current Opinion in Colloid and Interface Science, 2021, 52, 101417.	7.4	163
8	The Adsorption of Lysozyme at the Silica–Water Interface: A Neutron Reflection Study. Journal of Colloid and Interface Science, 1998, 203, 419-429.	9.4	151
9	Selfâ€Assembly of Short Peptide Amphiphiles: The Cooperative Effect of Hydrophobic Interaction and Hydrogen Bonding. Chemistry - A European Journal, 2011, 17, 13095-13102.	3.3	144
10	Reversible Thermoresponsive Peptide–PNIPAM Hydrogels for Controlled Drug Delivery. Biomacromolecules, 2019, 20, 3601-3610.	5.4	144
11	Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides?. Journal of the American Chemical Society, 2017, 139, 4185-4194.	13.7	139
12	Hydrophobic-Region-Induced Transitions in Self-Assembled Peptide Nanostructures. Langmuir, 2009, 25, 4115-4123.	3.5	137
13	Tuning the Self-Assembly of Short Peptides via Sequence Variations. Langmuir, 2013, 29, 13457-13464.	3.5	132
14	Designed Antimicrobial and Antitumor Peptides with High Selectivity. Biomacromolecules, 2011, 12, 3839-3843.	5.4	113
15	Twisted Nanotubes Formed from Ultrashort Amphiphilic Peptide I ₃ K and Their Templating for the Fabrication of Silica Nanotubes. Chemistry of Materials, 2010, 22, 5165-5173.	6.7	110
16	Limitations in the Application of the Gibbs Equation to Anionic Surfactants at the Air/Water Surface: Sodium Dodecylsulfate and Sodium Dodecylmonooxyethylenesulfate Above and Below the CMC. Langmuir, 2013, 29, 9335-9351.	3.5	109
17	Self-Assembly of Short Aβ(16â~22) Peptides: Effect of Terminal Capping and the Role of Electrostatic Interaction. Langmuir, 2011, 27, 2723-2730.	3.5	108
18	Effect of Surface Packing Density of Interfacially Adsorbed Monoclonal Antibody on the Binding of Hormonal Antigen Human Chorionic Gonadotrophin. Journal of Physical Chemistry B, 2006, 110, 1907-1914.	2.6	100

#	Article	IF	CITATIONS
19	Orientation of a Monoclonal Antibody Adsorbed at the Solid/Solution Interface:Â A Combined Study Using Atomic Force Microscopy and Neutron Reflectivity. Langmuir, 2006, 22, 6313-6320.	3.5	100
20	Generation of Acetoin and Its Derivatives in Foods. Journal of Agricultural and Food Chemistry, 2014, 62, 6487-6497.	5.2	89
21	Nanoribbons self-assembled from short peptides demonstrate the formation of polar zippers between β-sheets. Nature Communications, 2018, 9, 5118.	12.8	89
22	Application of the Gibbs Equation to the Adsorption of Nonionic Surfactants and Polymers at the Air–Water Interface: Comparison with Surface Excesses Determined Directly using Neutron Reflectivity. Langmuir, 2013, 29, 9324-9334.	3.5	88
23	Molecular mechanisms of anticancer action and cell selectivity ofÂshort α-helical peptides. Biomaterials, 2014, 35, 1552-1561.	11.4	88
24	Recent advances in short peptide self-assembly: from rational design to novel applications. Current Opinion in Colloid and Interface Science, 2020, 45, 1-13.	7.4	87
25	Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials, 2012, 33, 592-603.	11.4	84
26	Enzymatic Regulation of Self-Assembling Peptide A ₉ K ₂ Nanostructures and Hydrogelation with Highly Selective Antibacterial Activities. ACS Applied Materials & Interfaces, 2016, 8, 15093-15102.	8.0	83
27	Interfacial Compositions and Phase Structures in Mixed Surfactant Microemulsions. Langmuir, 1999, 15, 5271-5278.	3.5	77
28	High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles. ACS Applied Materials & Interfaces, 2015, 7, 17346-17355.	8.0	77
29	Recent development of peptide self-assembly. Progress in Natural Science: Materials International, 2008, 18, 653-660.	4.4	74
30	Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Expert Opinion on Drug Delivery, 2009, 6, 673-686.	5.0	73
31	Reduced Protein Adsorption on the Surface of a Chemically Grafted Phospholipid Monolayer. Langmuir, 2001, 17, 3382-3389.	3.5	72
32	Role of Ovalbumin in the Stabilization of Metastable Vaterite in Calcium Carbonate Biomineralization. Journal of Physical Chemistry B, 2009, 113, 8975-8982.	2.6	72
33	Interfacial Immobilization of Monoclonal Antibody and Detection of Human Prostate-Specific Antigen. Langmuir, 2011, 27, 7654-7662.	3.5	70
34	Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coordination Chemistry Reviews, 2020, 421, 213418.	18.8	67
35	Mechanistic Processes Underlying Biomimetic Synthesis of Silica Nanotubes from Self-Assembled Ultrashort Peptide Templates. Chemistry of Materials, 2011, 23, 2466-2474.	6.7	66
36	Latherin: A Surfactant Protein of Horse Sweat and Saliva. PLoS ONE, 2009, 4, e5726.	2.5	66

#	Article	IF	CITATIONS
37	Adsorption of Frog Foam Nest Proteins at the Air-Water Interface. Biophysical Journal, 2005, 88, 2114-2125.	0.5	65
38	Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. ACS Applied Materials & Interfaces, 2019, 11, 34609-34620.	8.0	64
39	A Novel Alkaliphilic Bacillus Esterase Belongs to the 13th Bacterial Lipolytic Enzyme Family. PLoS ONE, 2013, 8, e60645.	2.5	64
40	Lysozyme mediated calcium carbonate mineralization. Journal of Colloid and Interface Science, 2009, 332, 96-103.	9.4	63
41	Enzyme-Triggered Morphological Transition of Peptide Nanostructures for Tumor-Targeted Drug Delivery and Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 16357-16366.	8.0	61
42	Hydrogelation of the Short Self-Assembling Peptide I ₃ QGK Regulated by Transglutaminase and Use for Rapid Hemostasis. ACS Applied Materials & Interfaces, 2016, 8, 17833-17841.	8.0	60
43	Lysozyme Adsorption Studies at the Silica/Water Interface Using Dual Polarization Interferometry. Langmuir, 2004, 20, 1827-1832.	3.5	59
44	Dynamic self-assembly of surfactant-like peptides A6K and A9K. Soft Matter, 2009, 5, 3870.	2.7	59
45	Solvent Controlled Structural Transition of KI ₄ K Self-Assemblies: from Nanotubes to Nanofibrils. Langmuir, 2015, 31, 12975-12983.	3.5	59
46	Dynamic adsorption of monoclonal antibody layers on hydrophilic silica surface: A combined study by spectroscopic ellipsometry and AFM. Journal of Colloid and Interface Science, 2008, 323, 18-25.	9.4	58
47	Intracellular Microrheology of Motile Amoeba proteus. Biophysical Journal, 2008, 94, 3313-3322.	0.5	58
48	High Cell Selectivity and Low-Level Antibacterial Resistance of Designed Amphiphilic Peptide G(IIKK) ₃ I-NH ₂ . ACS Applied Materials & Interfaces, 2014, 6, 16529-16536.	8.0	57
49	Tuning Gelation Kinetics and Mechanical Rigidity of β-Hairpin Peptide Hydrogels via Hydrophobic Amino Acid Substitutions. ACS Applied Materials & Interfaces, 2014, 6, 14360-14368.	8.0	56
50	Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies. Biomaterials, 2005, 26, 7192-7206.	11.4	53
51	Rational design, properties, and applications of biosurfactants: a short review of recent advances. Current Opinion in Colloid and Interface Science, 2020, 45, 57-67.	7.4	53
52	Adsorption of β-Hairpin Peptides on the Surface of Water: A Neutron Reflection Study. Journal of the American Chemical Society, 2003, 125, 3751-3757.	13.7	52
53	Enzyme aggregation in ionic liquids studied by dynamic light scattering and small angle neutron scattering. Green Chemistry, 2007, 9, 859.	9.0	51
54	Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration. PLoS ONE, 2009, 4, e6980.	2.5	51

#	Article	IF	CITATIONS
55	Influence of Ovalbumin on CaCO ₃ Precipitation during <i>in Vitro</i> Biomineralization. Journal of Physical Chemistry B, 2010, 114, 5301-5308.	2.6	50
56	Interfacial recognition of human prostate-specific antigen by immobilized monoclonal antibody: effects of solution conditions and surface chemistry. Journal of the Royal Society Interface, 2012, 9, 2457-2467.	3.4	49
57	Real time, high resolution studies of protein adsorption and structure at the solid–liquid interface using dual polarization interferometry. Journal of Physics Condensed Matter, 2004, 16, S2493-S2496.	1.8	47
58	Ranaspumin-2: Structure and Function of a Surfactant Protein from the Foam Nests of a Tropical Frog. Biophysical Journal, 2009, 96, 4984-4992.	0.5	47
59	Thermoresponsive Microgel Films for Harvesting Cells and Cell Sheets. Biomacromolecules, 2013, 14, 3615-3625.	5.4	47
60	Surface Physical Activity and Hydrophobicity of Designed Helical Peptide Amphiphiles Control Their Bioactivity and Cell Selectivity. ACS Applied Materials & Interfaces, 2016, 8, 26501-26510.	8.0	47
61	Interfacial Nano-structuring of Designed Peptides Regulated by Solution pH. Journal of the American Chemical Society, 2004, 126, 8940-8947.	13.7	45
62	Controlling the Diameters of Nanotubes Selfâ€Assembled from Designed Peptide Bolaphiles. Small, 2018, 14, e1703216.	10.0	45
63	Neutron Reflection from the Liquidâ^'Liquid Interface:Â Adsorption of Hexadecylphosphorylcholine to the Hexadecaneâ^'Aqueous Solution Interface. Langmuir, 2005, 21, 11704-11709.	3.5	44
64	The reduced adsorption of lysozyme at the phosphorylcholine incorporated polymer/aqueous solution interface studied by spectroscopic ellipsometry. Biomaterials, 1999, 20, 1501-1511.	11.4	43
65	Dual modes of antitumor action of an amphiphilic peptide A9K. Biomaterials, 2013, 34, 2731-2737.	11.4	43
66	Different nanostructures caused by competition of intra- and inter- β -sheet interactions in hierarchical self-assembly of short peptides. Journal of Colloid and Interface Science, 2016, 464, 219-228.	9.4	42
67	Interfacial assembly of proteins and peptides: recent examples studied by neutron reflection. Journal of the Royal Society Interface, 2009, 6, S659-70.	3.4	41
68	Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. Colloids and Surfaces B: Biointerfaces, 2017, 150, 308-316.	5.0	41
69	Surface-Induced Unfolding of Human Lactoferrin. Langmuir, 2005, 21, 3354-3361.	3.5	40
70	Surface structural conformations of fibrinogen polypeptides for improved biocompatibility. Biomaterials, 2010, 31, 3781-3792.	11.4	40
71	Direct exfoliation of graphite into graphene in aqueous solutions of amphiphilic peptides. Journal of Materials Chemistry B, 2016, 4, 152-161.	5.8	40
72	Structure of hydrocarbon chains in surfactant monolayers at the air/water interface: neutron reflection from dodecyl trimethylammonium bromide. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 403.	1.7	39

#	Article	IF	CITATIONS
73	Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. ACS Applied Materials & Interfaces, 2021, 13, 16062-16074.	8.0	39
74	Mixing in cationic surfactant films studied by small-angle neutron scattering. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2143-2150.	1.7	36
75	Adsorption of Glucose Oxidase at Organicâ `Aqueous and Airâ `Aqueous Interfaces. Langmuir, 2003, 19, 4977-4984.	3.5	36
76	Interfacial Dynamic Adsorption and Structure of Molecular Layers of Peptide Surfactants. Langmuir, 2010, 26, 5690-5696.	3.5	36
77	Peptide Self-Assembled Nanostructures with Distinct Morphologies and Properties Fabricated by Molecular Design. ACS Applied Materials & Interfaces, 2017, 9, 39174-39184.	8.0	36
78	β-Casein Adsorption at the Hydrophobized Silicon Oxideâ^'Aqueous Solution Interface and the Effect of Added Electrolyte. Biomacromolecules, 2001, 2, 278-287.	5.4	35
79	Cationic Copolymer-Mediated DNA Immobilization: Interfacial Structure and Composition As Determined by Ellipsometry, Dual Polarization Interferometry, and Neutron Reflection. Langmuir, 2008, 24, 13556-13564.	3.5	35
80	Protein functionalized ZnO thin film bulk acoustic resonator as an odorant biosensor. Sensors and Actuators B: Chemical, 2012, 163, 242-246.	7.8	35
81	Influence of Molecular Structure on the Size, Shape, and Nanostructure of Nonionic C _{<i>n</i>} E _{<i>m</i>} Surfactant Micelles. Journal of Physical Chemistry B, 2014, 118, 179-188.	2.6	35
82	How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria?. ACS Applied Materials & Interfaces, 2020, 12, 55675-55687.	8.0	35
83	Aggregated Amphiphilic Antimicrobial Peptides Embedded in Bacterial Membranes. ACS Applied Materials & Interfaces, 2020, 12, 44420-44432.	8.0	35
84	Interfacial adsorption of fibrinogen and its inhibition by RGD peptide: a combined physical study. Journal of Physics Condensed Matter, 2004, 16, S2483-S2491.	1.8	34
85	Characterization of Petroporphyrins Using Ultravioletâ^'Visible Spectroscopy and Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Energy & Fuels, 2005, 19, 517-524.	5.1	34
86	Designed Short RGD Peptides for One-Pot Aqueous Synthesis of Integrin-Binding CdTe and CdZnTe Quantum Dots. ACS Applied Materials & Interfaces, 2012, 4, 6362-6370.	8.0	34
87	Label-free detection of human prostate-specific antigen (hPSA) using film bulk acoustic resonators (FBARs). Sensors and Actuators B: Chemical, 2014, 190, 946-953.	7.8	34
88	Thermoresponsive Copolymer Nanofilms for Controlling Cell Adhesion, Growth, and Detachment. Langmuir, 2010, 26, 17304-17314.	3.5	33
89	Graphene Oxide-Assisted Accumulation and Layer-by-Layer Assembly of Antibacterial Peptide for Sustained Release Applications. ACS Applied Materials & Interfaces, 2018, 10, 24937-24946.	8.0	33
90	What happens when pesticides are solubilized in nonionic surfactant micelles. Journal of Colloid and Interface Science, 2019, 541, 175-182.	9.4	31

#	Article	IF	CITATIONS
91	Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium. PLoS ONE, 2009, 4, e5627.	2.5	30
92	Molecular Modulation of Calcite Dissolution by Organic Acids. Crystal Growth and Design, 2011, 11, 3153-3162.	3.0	30
93	Surface active complexes formed between keratin polypeptides and ionic surfactants. Journal of Colloid and Interface Science, 2016, 484, 125-134.	9.4	30
94	Smart Textiles with Janus Wetting and Wicking Properties Fabricated by Graphene Oxide Coatings. Advanced Materials Interfaces, 2021, 8, 2001427.	3.7	30
95	Solution pH-Regulated Interfacial Adsorption of Diblock Phosphorylcholine Copolymers. Langmuir, 2005, 21, 9597-9603.	3.5	29
96	Microemulsions with Didodecyldimethylammonium Bromide Studied by Neutron Contrast Variation. Journal of Colloid and Interface Science, 1997, 190, 449-455.	9.4	28
97	Interfacial assembly of cationic peptide surfactants. Soft Matter, 2009, 5, 1630.	2.7	28
98	Fibronectin Conformation Switch Induced by Coadsorption with Human Serum Albumin. Langmuir, 2011, 27, 312-319.	3.5	28
99	Controllable Stabilization of Poly(<i>N</i> -isopropylacrylamide)-Based Microgel Films through Biomimetic Mineralization of Calcium Carbonate. Biomacromolecules, 2012, 13, 2299-2308.	5.4	28
100	Tuning Oneâ€Dimensional Nanostructures of Bolaâ€Like Peptide Amphiphiles by Varying the Hydrophilic Amino Acids. Chemistry - A European Journal, 2016, 22, 11394-11404.	3.3	28
101	Influence of Acyl Chain Saturation on the Membrane-Binding Activity of a Short Antimicrobial Peptide. ACS Omega, 2017, 2, 7482-7492.	3.5	28
102	Unexpected Role of Achiral Glycine in Determining the Suprastructural Handedness of Peptide Nanofibrils. ACS Nano, 2021, 15, 10328-10341.	14.6	28
103	Controlled Delivery of Antisense Oligodeoxynucleotide from Cationically Modified Phosphorylcholine Polymer Films. Biomacromolecules, 2006, 7, 784-791.	5.4	27
104	Amino acid side chains affect the bioactivity of designed short peptide amphiphiles. Journal of Materials Chemistry B, 2016, 4, 2359-2368.	5.8	27
105	Self-Assembly of Mesoscopic Peptide Surfactant Fibrils Investigated by STORM Super-Resolution Fluorescence Microscopy. Biomacromolecules, 2017, 18, 3481-3491.	5.4	27
106	Nanostructure of Polyplexes Formed between Cationic Diblock Copolymer and Antisense Oligodeoxynucleotide and Its Influence on Cell Transfection Efficiency. Biomacromolecules, 2007, 8, 3493-3502.	5.4	26
107	Fabrication of Patterned Thermoresponsive Microgel Strips on Cell-Adherent Background and Their Application for Cell Sheet Recovery. ACS Applied Materials & Interfaces, 2017, 9, 1255-1262.	8.0	26
108	The effect of surfactant adsorption on surface wettability and flow resistance in slit nanopore: A molecular dynamics study. Journal of Colloid and Interface Science, 2018, 513, 379-388.	9.4	26

#	Article	IF	CITATIONS
109	Relationship between the Structural Conformation of Monoclonal Antibody Layers and Antigen Binding Capacity. Biomacromolecules, 2007, 8, 2422-2428.	5.4	25
110	Structural Features of Micelles of Zwitterionic Dodecyl-phosphocholine (C12PC) Surfactants Studied by Small-Angle Neutron Scattering. Langmuir, 2015, 31, 9781-9789.	3.5	25
111	Membrane-lytic actions of sulphonated methyl ester surfactants and implications to bactericidal effect and cytotoxicity. Journal of Colloid and Interface Science, 2018, 531, 18-27.	9.4	25
112	Molecular Origin of the Self-Assembled Morphological Difference Caused by Varying the Order of Charged Residues in Short Peptides. Journal of Physical Chemistry B, 2014, 118, 12501-12510.	2.6	24
113	Coadsorption of Human Milk Lactoferrin into the Dipalmitoylglycerolphosphatidylcholine Phospholipid Monolayer Spread at the Air/Water Interface. Biophysical Journal, 2007, 92, 1254-1262.	0.5	23
114	Interfacial adsorption of cationic peptideamphiphiles: a combined study of in situspectroscopic ellipsometry and liquid AFM. Soft Matter, 2012, 8, 645-652.	2.7	23
115	Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres. Materials Science and Engineering C, 2020, 116, 111168.	7.3	23
116	Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. Journal of Colloid and Interface Science, 2021, 583, 553-562.	9.4	23
117	Multiple path length dual polarization interferometry. Optics Express, 2009, 17, 10959.	3.4	22
118	Copper(II)â€Mediated Selfâ€Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires. Chemistry - an Asian Journal, 2015, 10, 1953-1958.	3.3	22
119	Modulation of Antimicrobial Peptide Conformation and Aggregation by Terminal Lipidation and Surfactants. Langmuir, 2020, 36, 1737-1744.	3.5	22
120	Antibody adsorption on the surface of water studied by neutron reflection. MAbs, 2017, 9, 466-475.	5.2	21
121	Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective. Journal of Colloid and Interface Science, 2019, 548, 244-254.	9.4	21
122	Thermal fluctuations of fibrin fibres at short time scales. Soft Matter, 2008, 4, 1438.	2.7	20
123	Plasmid DNA Complexation with Phosphorylcholine Diblock Copolymers and Its Effect on Cell Transfection. Langmuir, 2008, 24, 6881-6888.	3.5	20
124	Effects of Anions on Nanostructuring of Cationic Amphiphilic Peptides. Journal of Physical Chemistry B, 2011, 115, 11862-11871.	2.6	20
125	Self-Assembled Two-Dimensional Thermoresponsive Microgel Arrays for Cell Growth/Detachment Control. Biomacromolecules, 2014, 15, 4021-4031.	5.4	20
126	Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules, 2020, 25, 2047.	3.8	20

#	Article	IF	CITATIONS
127	Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb. ACS Applied Materials & Interfaces, 2017, 9, 23202-23211.	8.0	19
128	Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy. Langmuir, 2018, 34, 1827-1833.	3.5	19
129	Interfacial Dissociation and Unfolding of Glucose Oxidase. Journal of Physical Chemistry B, 2003, 107, 3954-3962.	2.6	17
130	Interfacial adsorption of lipopeptidesurfactants at the silica/water interface studied by neutron reflection. Soft Matter, 2011, 7, 1777-1788.	2.7	17
131	Interfacial Adsorption of Antifreeze Proteins: A Neutron Reflection Study. Biophysical Journal, 2008, 94, 4405-4413.	0.5	16
132	Optical Extinction Combined with Phase Measurements for Probing DNAâ ^{~,} Small-Molecule Interactions Using an Evanescent Waveguide Biosensor. Analytical Chemistry, 2010, 82, 5455-5462.	6.5	16
133	Controlled Release of Hydrophilic Guest Molecules from Photoresponsive Nucleolipid Vesicles. ACS Applied Materials & Interfaces, 2013, 5, 6232-6236.	8.0	16
134	Self-assembly of amphiphilic peptides: Effects of the single-chain-to-gemini structural transition and the side chain groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 263-270.	4.7	16
135	Interfacial Adsorption of Monoclonal Antibody COE-3 at the Solid/Water Interface. ACS Applied Materials & amp; Interfaces, 2018, 10, 1306-1316.	8.0	16
136	Measurement of the thickness of ultra-thin adsorbed globular protein layers with dual-polarisation interferometry: a comparison with neutron reflectivity. Soft Matter, 2011, 7, 7223.	2.7	15
137	The structure and mass of heterogeneous thin films measured with dual polarization interferometry and ellipsometry. RSC Advances, 2013, 3, 3316.	3.6	15
138	Structural features of reconstituted wheat wax films. Journal of the Royal Society Interface, 2016, 13, 20160396.	3.4	15
139	How does substrate hydrophobicity affect the morphological features of reconstituted wax films and their interactions with nonionic surfactant and pesticide?. Journal of Colloid and Interface Science, 2020, 575, 245-253.	9.4	15
140	DNA immobilization using biocompatible diblock phosphorylcholine copolymers. Surface and Interface Analysis, 2006, 38, 548-551.	1.8	14
141	Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin. Biointerphases, 2008, 3, FB36-FB43.	1.6	14
142	Dynamic Adsorption and Structure of Interfacial Bilayers Adsorbed from Lipopeptide Surfactants at the Hydrophilic Silicon/Water Interface: Effect of the Headgroup Length. Langmuir, 2011, 27, 8798-8809.	3.5	14
143	Redox modulated hydrogelation of a self-assembling short peptide amphiphile. Science Bulletin, 2012, 57, 4296-4303.	1.7	14
144	Controlled silica deposition on self-assembled peptide nanostructures via varying molecular structures of short amphiphilic peptides. Soft Matter, 2014, 10, 7623-7629.	2.7	14

#	Article	IF	CITATIONS
145	Self-assembly and nanoaggregation of a pH responsive DNA hybrid amphiphile. Soft Matter, 2015, 11, 1748-1754.	2.7	14
146	Patterned Thermoresponsive Microgel Surfaces to Control Cell Detachment. Biomacromolecules, 2016, 17, 572-579.	5.4	14
147	Influence of Conventional Surfactants on the Self-Assembly of a Bola Type Amphiphilic Peptide. Langmuir, 2017, 33, 5446-5455.	3.5	14
148	Dissolution of the Calcite (104) Face under Specific Calcite–Aspartic Acid Interaction As Revealed by in Situ Atomic Force Microscopy. Crystal Growth and Design, 2012, 12, 2594-2601.	3.0	13
149	Interplay between Intrinsic Conformational Propensities and Intermolecular Interactions in the Self-Assembly of Short Surfactant-like Peptides Composed of Leucine/Isoleucine. Langmuir, 2016, 32, 4662-4672.	3.5	13
150	Tuning self-assembled morphology of the Aβ(16–22) peptide by substitution of phenylalanine residues. Colloids and Surfaces B: Biointerfaces, 2016, 147, 116-123.	5.0	13
151	Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	3.0	13
152	Crystal Growth of Calcite Mediated by Ovalbumin and Lysozyme: Atomic Force Microscopy Study. Crystal Growth and Design, 2013, 13, 1583-1589.	3.0	12
153	Improving genetic immobilization of a cellulase on yeast cell surface for bioethanol production using cellulose. Journal of Basic Microbiology, 2013, 53, 381-389.	3.3	12
154	Interfacial Adsorption of a Monoclonal Antibody and Its Fab and Fc Fragments at the Oil/Water Interface. Langmuir, 2019, 35, 13543-13552.	3.5	12
155	Surface adsorption and solution aggregation of a novel lauroyl-l-carnitine surfactant. Journal of Colloid and Interface Science, 2021, 591, 106-114.	9.4	12
156	Self-Assembly of Magnetic Bacillus-Shaped Bilayer Vesicles in Catanionic Surfactant Solutions. Langmuir, 2016, 32, 10226-10234.	3.5	11
157	Interfacial Adsorption of Silk Fibroin Peptides and Their Interaction with Surfactants at the Solid–Water Interface. Langmuir, 2016, 32, 8202-8211.	3.5	11
158	Structural Features of Reconstituted Cuticular Wax Films upon Interaction with Nonionic Surfactant C ₁₂ E ₆ . Langmuir, 2018, 34, 3395-3404.	3.5	11
159	How does solubilisation of plant waxes into nonionic surfactant micelles affect pesticide release?. Journal of Colloid and Interface Science, 2019, 556, 650-657.	9.4	11
160	Active Modulation of States of Prestress in Self-Assembled Short Peptide Gels. Biomacromolecules, 2019, 20, 1719-1730.	5.4	11
161	Ordered Nanofibers Fabricated from Hierarchical Selfâ€Assembling Processes of Designed αâ€Helical Peptides. Small, 2020, 16, e2003945.	10.0	11
162	What happens when pesticides are solubilised in binary ionic/zwitterionic-nonionic mixed micelles?. Journal of Colloid and Interface Science, 2021, 586, 190-199.	9.4	11

#	Article	IF	CITATIONS
163	Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions. Extremophiles, 2013, 17, 995-1002.	2.3	10
164	Interfacial assembly of lipopeptide surfactants on octyltrimethoxysilane-modified silica surface. Soft Matter, 2013, 9, 9684-9691.	2.7	10
165	In-Membrane Nanostructuring of Cationic Amphiphiles Affects Their Antimicrobial Efficacy and Cytotoxicity: A Comparison Study between a De Novo Antimicrobial Lipopeptide and Traditional Biocides. Langmuir, 2022, 38, 6623-6637.	3.5	10
166	Adsorption of polyethyleneimine characterized by spectroscopic ellipsometry. Progress in Natural Science: Materials International, 2005, 15, 56-59.	4.4	9
167	Interfacial immobilisation of DNA molecules. Annual Reports on the Progress of Chemistry Section C, 2007, 103, 261.	4.4	9
168	Interfacial structure and history dependent activity of immobilised antibodies in model pregnancy tests. Soft Matter, 2012, 8, 9847.	2.7	9
169	Markov Chain Modeling of Surfactant Critical Micelle Concentration and Surface Composition. Langmuir, 2019, 35, 561-569.	3.5	9
170	Interfacial Assembly Inspired by Marine Mussels and Antifouling Effects of Polypeptoids: A Neutron Reflection Study. Langmuir, 2020, 36, 12309-12318.	3.5	9
171	Effects of Conventional Surfactants on the Activity of Designed Antimicrobial Peptide. Langmuir, 2020, 36, 3531-3539.	3.5	9
172	Structural elucidation upon binding of antimicrobial peptides into binary mixed lipid monolayers mimicking bacterial membranes. Journal of Colloid and Interface Science, 2021, 598, 193-205.	9.4	9
173	Interfacial Structure of Immobilized Antibodies and Perdeuterated HSA in Model Pregnancy Tests Measured with Neutron Reflectivity. Langmuir, 2014, 30, 5880-5887.	3.5	8
174	Co-adsorption of peptide amphiphile V ₆ K and conventional surfactants SDS and C ₁₂ TAB at the solid/water interface. Soft Matter, 2015, 11, 7986-7994.	2.7	8
175	Metal-insulator-metal diodes based on alkyltrichlorosilane self-assembled monolayers. AIP Advances, 2019, 9, 065017.	1.3	8
176	Single-Molecule Study of Peptide Gel Dynamics Reveals States of Prestress. Langmuir, 2018, 34, 14678-14689.	3.5	7
177	Coadsorption of a Monoclonal Antibody and Nonionic Surfactant at the SiO2/Water Interface. ACS Applied Materials & amp; Interfaces, 2018, 10, 44257-44266.	8.0	7
178	Development of a novel <i>inÂvitro</i> 3D intestinal model for permeability evaluations. International Journal of Food Sciences and Nutrition, 2020, 71, 549-562.	2.8	7
179	Implications of surfactant hydrophobic chain architecture on the Surfactant-Skin lipid model interaction. Journal of Colloid and Interface Science, 2022, 608, 405-415.	9.4	7
180	Contrasting impacts of mixed nonionic surfactant micelles on plant growth in the delivery of fungicide and herbicide. Journal of Colloid and Interface Science, 2022, 618, 78-87.	9.4	6

#	Article	IF	CITATIONS
181	2â€fâ€fNeutron reflection studies of interactions between surfactants and proteins at interfaces. Annual Reports on the Progress of Chemistry Section C, 2002, 98, 3-32.	4.4	5
182	Virus-like supramolecular assemblies formed by cooperation of base pairing interaction and peptidic association. Science China Chemistry, 2016, 59, 310-315.	8.2	5
183	Unusual surface and solution behaviour of keratin polypeptides. RSC Advances, 2016, 6, 105192-105201.	3.6	4
184	Peptide nucleic acid-ionic self-complementary peptide conjugates: highly efficient DNA condensers with specific condensing mechanism. RSC Advances, 2017, 7, 3796-3803.	3.6	4
185	Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) with Graphene Oxide. Scientific Reports, 2018, 8, 16928.	3.3	4
186	How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility?. Journal of Colloid and Interface Science, 2022, 608, 193-206.	9.4	4
187	The effect of antibody surface packing density on its antigen binding capacity. Progress in Natural Science: Materials International, 2005, 15, 139-144.	4.4	3
188	Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues. Cell Biochemistry and Function, 2016, 34, 163-172.	2.9	3
189	How do chain lengths of acyl-l-carnitines affect their surface adsorption and solution aggregation?. Journal of Colloid and Interface Science, 2022, 609, 491-502.	9.4	3
190	Molecular biophysics underlying gene delivery. Annual Reports on the Progress of Chemistry Section C, 2010, 106, 305.	4.4	2
191	Degradation of fungicide carbendazim in aqueous solution by sonolytic ozonation. , 2011, , .		2
192	Cyclic arginyl–glycyl–aspartic acid (RGD) peptide-induced synthesis of uniform and stable one-dimensional CdTe nanostructures in aqueous solution. RSC Advances, 2014, 4, 11794.	3.6	2
193	Surface properties of nucleolipids and photo-controlled release of hydrophobic guest molecules from their micellar aggregates. Soft Matter, 2014, 10, 7218.	2.7	1
194	Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross- <i>β</i> peptides. Chinese Physics B, 2017, 26, 128701.	1.4	1
195	Temperature Resistant Binary SLES/Nonionic Surfactant Mixtures at the Air/Water Interface. Langmuir, 2018, 34, 9442-9452.	3.5	1
196	Structural features of interfacially adsorbed acyl-L-carnitines. Journal of Colloid and Interface Science, 2022, , .	9.4	0