List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3100775/publications.pdf Version: 2024-02-01

RENOIT ROMAN

#	Article	IF	CITATIONS
1	Guided tearing: The ruler test. Physical Review Materials, 2021, 5, .	2.4	1
2	Computational inverse design of surface-based inflatables. ACM Transactions on Graphics, 2021, 40, 1-14.	7.2	0
3	Computational inverse design of surface-based inflatables. ACM Transactions on Graphics, 2021, 40, 1-14.	7.2	34
4	Stretch-Induced Bending of Soft Ribbed Strips. Physical Review Letters, 2021, 127, 168002.	7.8	2
5	Shape Programming by Modulating Actuation over Hierarchical Length Scales. Advanced Materials, 2020, 32, e2004515.	21.0	7
6	Geometry and mechanics of inextensible curvilinear balloons. Journal of the Mechanics and Physics of Solids, 2020, 143, 104068.	4.8	8
7	Programming stiff inflatable shells from planar patterned fabrics. Soft Matter, 2020, 16, 7898-7903.	2.7	27
8	Mechanics and Energetics of Electromembranes. Soft Robotics, 2020, 7, 675-687.	8.0	0
9	Elastocapillary adhesion of a soft cap on a rigid sphere. Soft Matter, 2020, 16, 1961-1966.	2.7	5
10	Nature of Crack Path Instabilities in Thin Sheets Cut by Blunt Objects. Physical Review Letters, 2020, 124, 174101.	7.8	2
11	Collaborative Oscillatory Fracture. Physical Review Letters, 2020, 124, 174102.	7.8	2
12	Morphogenesis through elastic phase separation in a pneumatic surface. Comptes Rendus - Mecanique, 2020, 348, 649-657.	0.7	1
13	Predicting tearing paths in thin sheets. Physical Review E, 2019, 100, 023002.	2.1	3
14	Programming curvilinear paths of flat inflatables. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16692-16696.	7.1	23
15	Bio-inspired pneumatic shape-morphing elastomers. Nature Materials, 2019, 18, 24-28.	27.5	226
16	Elastocapillarity: When Surface Tension Deforms Elastic Solids. Annual Review of Fluid Mechanics, 2018, 50, 629-659.	25.0	198
17	A variational model of fracture for tearing brittle thin sheets. Journal of the Mechanics and Physics of Solids, 2018, 119, 334-348.	4.8	21
18	Buckling of elastomer sheets under non-uniform electro-actuation. Soft Matter, 2017, 13, 2876-2885.	2.7	25

#	Article	IF	CITATIONS
19	Intertwined Multiple Spiral Fracture in Perforated Sheets. Physical Review Letters, 2016, 116, 165501.	7.8	12
20	The tearing path in a thin anisotropic sheet from two pulling points: Wulff's view. Soft Matter, 2016, 12, 5979-5985.	2.7	18
21	Rupture et délamination de films minces. , 2016, , 26-29.	0.1	Ο
22	A new failure mechanism in thin film by collaborative fracture and delamination: Interacting duos of cracks. Journal of the Mechanics and Physics of Solids, 2015, 84, 214-229.	4.8	16
23	Effect of friction on the peeling test at zero-degrees. Soft Matter, 2015, 11, 9281-9290.	2.7	33
24	Reversibility of crumpling on compressed thin sheets. European Physical Journal E, 2014, 37, 28.	1.6	2
25	Self-Replicating Cracks: A Collaborative Fracture Mode in Thin Films. Physical Review Letters, 2014, 113, 085502.	7.8	68
26	Capillary buckling of a floating annulus. Soft Matter, 2013, 9, 10985.	2.7	47
27	Fracture path in brittle thin sheets: a unifying review on tearing. International Journal of Fracture, 2013, 182, 209-237.	2.2	34
28	Spiral tearing of thin films. Soft Matter, 2013, 9, 8282.	2.7	16
29	Forbidden Directions for the Fracture of Thin Anisotropic Sheets: An Analogy with the Wulff Plot. Physical Review Letters, 2013, 110, 144301.	7.8	55
30	Stress Defocusing in Anisotropic Compaction of Thin Sheets. Physical Review Letters, 2012, 108, 074301.	7.8	13
31	Stamping and Wrinkling of Elastic Plates. Physical Review Letters, 2012, 109, 054302.	7.8	46
32	Wrinkling Hierarchy in Constrained Thin Sheets from Suspended Graphene to Curtains. Physical Review Letters, 2011, 106, 224301.	7.8	171
33	Wrapping an Adhesive Sphere with an Elastic Sheet. Physical Review Letters, 2011, 106, 174301.	7.8	67
34	Stretch-induced wrinkles in reinforced membranes: From out-of-plane to in-plane structures. Europhysics Letters, 2011, 96, 64001.	2.0	25
35	Piercing an interface with a brush: Collaborative stiffening. Europhysics Letters, 2010, 90, 44006.	2.0	34
36	Elasto-capillarity: deforming an elastic structure with a liquid droplet. Journal of Physics Condensed Matter, 2010, 22, 493101.	1.8	266

#	Article	IF	CITATIONS
37	Capillary origami controlled by an electric field. Soft Matter, 2010, 6, 4491.	2.7	65
38	Random blisters on stickers: metrology through defects. Soft Matter, 2010, 6, 5720.	2.7	14
39	Localization through Surface Folding in Solid Foams under Compression. Physical Review Letters, 2009, 103, 045501.	7.8	38
40	The macroscopic delamination of thin films from elastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10901-10906.	7.1	225
41	Capillarity induced folding of elastic sheets. European Physical Journal: Special Topics, 2009, 166, 67-71.	2.6	43
42	Tearing as a test for mechanical characterization of thin adhesive films. Nature Materials, 2008, 7, 386-390.	27.5	64
43	Unzip instabilities: Straight to oscillatory transitions in the cutting of thin polymer sheets. Europhysics Letters, 2008, 82, 64002.	2.0	10
44	Cracking sheets: Oscillatory fracture paths in thin elastic sheets. Chaos, 2008, 18, 041108.	2.5	1
45	Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet. Physical Review Letters, 2007, 98, 156103.	7.8	388
46	Elastocapillary coalescence: Aggregation and fragmentation with a maximal size. Physical Review E, 2007, 76, 060102.	2.1	34
47	Geometrically driven wrinkling observed in free plastic sheets and leaves. Physical Review E, 2007, 75, 046211.	2.1	81
48	Piercing a liquid surface with an elastic rod: Buckling under capillary forces. Journal of the Mechanics and Physics of Solids, 2007, 55, 1212-1235.	4.8	58
49	3D aggregation of wet fibers. Europhysics Letters, 2007, 77, 44005.	2.0	87
50	Cracks in Thin Sheets: When Geometry Rules the Fracture Path. , 2006, , 119-120.		0
51	Cracks in Thin Sheets: When Geometry Rules the Fracture Path. Physical Review Letters, 2005, 95, 025502.	7.8	41
52	Comment on "Crack Street: The Cycloidal Wake of a Cylinder Tearing through a Thin Sheet― Physical Review Letters, 2005, 94, 129601; author reply 129602.	7.8	5
53	Dynamics of developable cones under shear. Physical Review E, 2004, 70, 026607.	2.1	13
54	Elastocapillary coalescence in wet hair. Nature, 2004, 432, 690-690.	27.8	374

#	Article	IF	CITATIONS
55	Uniqueness of solutions for constrained Elastica. Physica D: Nonlinear Phenomena, 2004, 192, 161-186.	2.8	31
56	Oscillatory fracture paths in thin elastic sheets. Comptes Rendus - Mecanique, 2003, 331, 811-816.	2.1	24
57	Effect of multiplicative noise on parametric instabilities. Physica D: Nonlinear Phenomena, 2003, 174, 84-99.	2.8	24
58	Theory of edges of leaves. Europhysics Letters, 2003, 62, 498-504.	2.0	57
59	An analog experiment of the parametric instability. American Journal of Physics, 2002, 70, 744-749.	0.7	18
60	Postbuckling of bilaterally constrained rectangular thin plates. Journal of the Mechanics and Physics of Solids, 2002, 50, 2379-2401.	4.8	57
61	Buckling cascades in free sheets. Nature, 2002, 419, 579-579.	27.8	208
62	Secondary buckling patterns of a thin plate under in-plane compression. European Physical Journal B, 2002, 27, 7-10.	1.5	35
63	Noise Induced Bistability of Parametric Surface Waves. Physical Review Letters, 2001, 88, 024502.	7.8	27
64	Buckling cascade of thin plates: Forms, constraints and similarity. Europhysics Letters, 1999, 46, 602-608.	2.0	42
65	Time-reversal in an ultrasonic waveguide. Applied Physics Letters, 1997, 70, 1811-1813.	3.3	84
66	Density variations in a oneâ€dimensional granular system. Physics of Fluids, 1996, 8, 3218-3228.	4.0	27
67	A Unifying View of Thin-Plate Fracture. Physics Magazine, 0, 14, .	0.1	0