
Jianhang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099708/publications.pdf Version: 2024-02-01

ΙΙΔΝΗΔΝΟ ΗΠΑΝΟ

#	Article	IF	CITATIONS
1	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9, 2906.	12.8	1,036
2	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule, 2019, 3, 1289-1300.	24.0	672
3	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie - International Edition, 2018, 57, 11737-11741.	13.8	425
4	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods, 2019, 3, 1800272.	8.6	387
5	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	19.5	309
6	Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. CheM, 2020, 6, 968-984.	11.7	274
7	Highâ€Energy Rechargeable Metallic Lithium Battery at â`'70 °C Enabled by a Cosolvent Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 5623-5627.	13.8	217
8	Towards High Performance Li–S Batteries via Sulfonateâ€Rich COFâ€Modified Separator. Advanced Materials, 2021, 33, e2105178.	21.0	180
9	An organic/inorganic electrode-based hydronium-ion battery. Nature Communications, 2020, 11, 959.	12.8	157
10	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie, 2018, 130, 11911-11915.	2.0	151
11	Solid-State Proton Battery Operated at Ultralow Temperature. ACS Energy Letters, 2020, 5, 685-691.	17.4	125
12	Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery. Journal of Materials Chemistry A, 2015, 3, 7429-7436.	10.3	110
13	Chemically Self-Charging Aqueous Zinc-Organic Battery. Journal of the American Chemical Society, 2021, 143, 15369-15377.	13.7	109
14	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie - International Edition, 2020, 59, 18322-18333.	13.8	86
15	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Interfaces, 2019, 11, 20796-20803.	8.0	75
16	Low-cost and high safe manganese-based aqueous battery for grid energy storage and conversion. Science Bulletin, 2019, 64, 1780-1787.	9.0	56
17	Ultrasound assisted polymerization for synthesis of ZnO/Polypyrrole composites for zinc/nickel rechargeable battery. Journal of Power Sources, 2014, 271, 143-151.	7.8	55
18	Highâ€Energy Rechargeable Metallic Lithium Battery at â^'70 °C Enabled by a Cosolvent Electrolyte. Angewandte Chemie, 2019, 131, 5679-5683.	2.0	52

JIANHANG HUANG

#	Article	IF	CITATIONS
19	Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy and Environmental Science, 2021, 14, 883-889.	30.8	49
20	Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods. Chemical Engineering Journal, 2022, 442, 136349.	12.7	49
21	The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc–nickel secondary cells. Journal of Power Sources, 2015, 276, 162-169.	7.8	47
22	Self-assembly of exfoliated layered double hydroxide and graphene nanosheets for electrochemical energy storage in zinc/nickel secondary batteries. Journal of Power Sources, 2017, 359, 111-118.	7.8	47
23	Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting. Cell Reports Physical Science, 2020, 1, 100138.	5.6	43
24	Electrochemical properties of ZnO added with Zn-Al-hydrotalcites as anode materials for Zinc/Nickel alkaline secondary batteries. Electrochimica Acta, 2015, 154, 308-314.	5.2	39
25	Layered Double Oxides Nano-flakes Derived From Layered Double Hydroxides: Preparation, Properties and Application in Zinc/Nickel Secondary Batteries. Electrochimica Acta, 2015, 185, 190-197.	5.2	37
26	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie, 2020, 132, 18478-18489.	2.0	36
27	The electrochemical performances of Zn–Sn–Al-hydrotalcites in Zn–Ni secondary cells. Journal of Power Sources, 2014, 257, 174-180.	7.8	35
28	An aqueous manganese–lead battery for large-scale energy storage. Journal of Materials Chemistry A, 2020, 8, 5959-5967.	10.3	29
29	A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell. Scientific Reports, 2016, 6, 24471.	3.3	28
30	Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO ₄ F Cathode. ACS Sustainable Chemistry and Engineering, 2021, 9, 3223-3231.	6.7	26
31	The effects of element Cu on the electrochemical performances of Zinc-Aluminum-hydrotalcites in Zinc/Nickel secondary battery. Electrochimica Acta, 2015, 180, 451-459.	5.2	25
32	Influences of Zn-Sn-Al-Hydrotalcite Additive on the Electrochemical Performances of ZnO for Zinc-Nickel Secondary Cells. Journal of the Electrochemical Society, 2014, 161, A1981-A1986.	2.9	24
33	Cathode Materials Challenge Varied with Different Electrolytes in Zinc Batteries. , 2022, 4, 190-204.		24
34	A new class of nanocomposites of Zn–Al–Bi layered double oxides: large reversible capacity and better cycle performance for alkaline secondary batteries. RSC Advances, 2016, 6, 92896-92904.	3.6	23
35	The Impact of Hydrocalumites Additives on the Electrochemical Performance of Zinc-Nickel Secondary Cells. Electrochimica Acta, 2016, 187, 65-72.	5.2	23
36	Synthesis of ZnO/polypyrrole composites and an application in Zn/Ni rechargeable batteries. RSC Advances, 2014, 4, 19205.	3.6	22

JIANHANG HUANG

#	Article	IF	CITATIONS
37	Evaluation of tetraphenylporphyrin modified ZnO as anode material for Ni-Zn rechargeable battery. Electrochimica Acta, 2014, 123, 278-284.	5.2	22
38	Preparation of cribriform sheet-like carbon-coated zinc oxide with improved electrochemical performance. Journal of Power Sources, 2015, 289, 8-16.	7.8	21
39	Effect of dodecyl sulfate anions on the electrochemical performances of Zinc-Aluminum-hydrotalcite as anode material for Zinc/Nickel secondary batteries. Electrochimica Acta, 2014, 149, 101-107.	5.2	20
40	A one-pot method to prepare a ZnO/Ag/polypyrrole composite for zinc alkaline secondary batteries. RSC Advances, 2015, 5, 33814-33817.	3.6	17
41	Preparation and stability study of potassium ferrate (VI) coated with phthalocyanine for alkaline super-iron battery. Journal of Solid State Electrochemistry, 2015, 19, 723-730.	2.5	14
42	Aqueous rechargeable zinc batteries: Challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30, 100801.	4.8	14
43	Sheet-Like Carbon-Coated Zn-Al-Bi Layered Double Oxides Nanocomposites Enabling High Performance for Rechargeable Alkaline Batteries. Journal of the Electrochemical Society, 2017, 164, A3068-A3074.	2.9	13
44	Energizing hybrid supercapacitors by using Mn ²⁺ -based active electrolyte. Journal of Materials Chemistry A, 2020, 8, 15051-15057.	10.3	13
45	Building low-temperature batteries: Non-aqueous or aqueous electrolyte?. Current Opinion in Electrochemistry, 2022, 33, 100949.	4.8	13
46	In situ micro-current collector of amorphous manganese dioxide as cathode material for sodium-ion batteries. Ionics, 2022, 28, 1211-1217.	2.4	2