Anne E Willis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A protease-activatable luminescent biosensor and reporter cell line for authentic SARS-CoV-2 infection. PLoS Pathogens, 2022, 18, e1010265.	4.7	28
2	Unresolved stalled ribosome complexes restrict cell-cycle progression after genotoxic stress. Molecular Cell, 2022, 82, 1557-1572.e7.	9.7	30
3	Development of a colorimetric assay for the detection of SARS-CoV-2 3CLpro activity. Biochemical Journal, 2022, 479, 901-920.	3.7	3
4	Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Seminars in Cancer Biology, 2022, 86, 151-165.	9.6	7
5	eEF2K activity is required for the phenotypes of the Rpl24 mouse. Journal of Investigative Dermatology, 2022, , .	0.7	0
6	MNK Inhibition Sensitizes <i>KRAS</i> -Mutant Colorectal Cancer to mTORC1 Inhibition by Reducing eIF4E Phosphorylation and c-MYC Expression. Cancer Discovery, 2021, 11, 1228-1247.	9.4	45
7	The mTOR regulated RNA-binding protein LARP1 requires PABPC1 for guided mRNA interaction. Nucleic Acids Research, 2021, 49, 458-478.	14.5	66
8	Don't shoot the messenger… shoot the reader. Molecular Cell, 2021, 81, 3041-3042.	9.7	0
9	The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nature Communications, 2021, 12, 4920.	12.8	20
10	Integrated genomics point to immune vulnerabilities in pleural mesothelioma. Scientific Reports, 2021, 11, 19138.	3.3	12
11	Hypoxia: Uncharged tRNA to the Rescue!. Current Biology, 2021, 31, R25-R27.	3.9	0
12	Translation initiation in cancer at a glance. Journal of Cell Science, 2021, 134, .	2.0	28
13	Rpl24Bst mutation suppresses colorectal cancer by promoting eEF2 phosphorylation via eEF2K. ELife, 2021, 10, .	6.0	15
14	The cell stress response: extreme times call for postâ€ŧranscriptional measures. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1578.	6.4	20
15	Should I Stay or Should I Go: eIF3 Remains Ribosome Associated and Is Required for Elongation. Molecular Cell, 2020, 79, 539-541.	9.7	3
16	Organic phase separation opens up new opportunities to interrogate the RNA-binding proteome. Current Opinion in Chemical Biology, 2020, 54, 70-75.	6.1	35
17	Efficient recovery of the RNA-bound proteome and protein-bound transcriptome using phase separation (OOPS). Nature Protocols, 2020, 15, 2568-2588.	12.0	15
18	Engineered transient and stable overexpression of translation factors eIF3i and eIF3c in CHOK1 and HEK293Âcells gives enhanced cell growth associated with increased c-Myc expression and increased recombinant protein synthesis. Metabolic Engineering, 2020, 59, 98-105.	7.0	17

#	Article	IF	CITATIONS
19	Control of translation elongation in health and disease. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	62
20	Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I. ELife, 2020, 9, .	6.0	14
21	Full-length NF-κB repressing factor contains an XRN2 binding domain. Biochemical Journal, 2020, 477, 773-786.	3.7	2
22	Frozen? Let it go to reset circadian rhythms. EMBO Journal, 2020, 39, e106711.	7.8	2
23	Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biology, 2019, 17, e3000297.	5.6	87
24	Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 2019, 26, 2535-2550.	11.2	10
25	Signaling from mTOR to eIF21 \pm mediates cell migration in response to the chemotherapeutic doxorubicin. Science Signaling, 2019, 12, .	3.6	21
26	Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 2019, 37, 169-178.	17.5	247
27	<i>Trans</i> â€acting translational regulatory RNA binding proteins. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1465.	6.4	79
28	Post-transcriptional control of stress responses in cancer. Current Opinion in Genetics and Development, 2018, 48, 30-35.	3.3	4
29	Inhibition of Sec61-dependent translocation by mycolactone uncouples the integrated stress response from ER stress, driving cytotoxicity via translational activation of ATF4. Cell Death and Disease, 2018, 9, 397.	6.3	59
30	Sustained protein synthesis and reduced eEF2K levels in TAp73 mice brain: a possible compensatory mechanism. Cell Cycle, 2018, 17, 2637-2643.	2.6	4
31	Identification of the RNA polymerase I-RNA interactome. Nucleic Acids Research, 2018, 46, 11002-11013.	14.5	19
32	CD40L/IL-4–stimulated CLL demonstrates variation in translational regulation of DNA damage response genes including ATM. Blood Advances, 2018, 2, 1869-1881.	5.2	15
33	TAp73 contributes to the oxidative stress response by regulating protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6219-6224.	7.1	32
34	Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes and Development, 2017, 31, 18-33.	5.9	184
35	RTN3 Is a Novel Cold-Induced Protein and Mediates Neuroprotective Effects of RBM3. Current Biology, 2017, 27, 638-650.	3.9	64
36	Till stress do us ataRT: a novel toxin–antitoxin system targeting translation initiation. Cell Death and Differentiation, 2017, 24, 951-952.	11.2	0

#	Article	IF	CITATIONS
37	An improved analysis methodology for translational profiling by microarray. Rna, 2017, 23, 1601-1613.	3.5	5
38	Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochemical Society Transactions, 2017, 45, 1007-1014.	3.4	65
39	Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf). Current Biology, 2017, 27, 3302-3314.e6.	3.9	96
40	Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6117-E6126.	7.1	55
41	Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus. Viruses, 2016, 8, 25.	3.3	25
42	Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis. Rna, 2016, 22, 623-635.	3.5	27
43	Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor elF4E: Synthesis, structural and functional characterisation. European Journal of Medicinal Chemistry, 2016, 124, 200-217.	5.5	23
44	Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. Journal of Experimental Medicine, 2016, 213, 2503-2523.	8.5	128
45	Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation. Blood, 2016, 127, 449-457.	1.4	56
46	Translational Control: Selective Upregulation of ECM Components Drives Tumour Growth. Current Biology, 2016, 26, R241-R243.	3.9	1
47	PEITC-mediated inhibition of mRNA translation is associated with both inhibition of mTORC1 and increased eIF21± phosphorylation in established cell lines and primary human leukemia cells. Oncotarget, 2016, 7, 74807-74819.	1.8	7
48	Control of translation in the cold: implications for therapeutic hypothermia. Biochemical Society Transactions, 2015, 43, 333-337.	3.4	4
49	Cap-Independent Translation in Hematological Malignancies. Frontiers in Oncology, 2015, 5, 293.	2.8	4
50	A common polymorphism in the $5\hat{a} \in 2$ UTR of ERCC5 creates an upstream ORF that confers resistance to platinum-based chemotherapy. Genes and Development, 2015, 29, 1891-1896.	5.9	32
51	Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation. Biochemical Journal, 2015, 465, 227-238.	3.7	39
52	RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature, 2015, 518, 236-239.	27.8	189
53	p58IPK is an inhibitor of the elF2α kinase GCN2 and its localization and expression underpin protein synthesis and ER processing capacity. Biochemical Journal, 2015, 465, 213-225.	3.7	42
54	mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 2015, 517, 497-500.	27.8	257

#	Article	IF	CITATIONS
55	Large scale integration of drug-target information reveals poly-pharmacological drug action mechanisms in tumor cell line growth inhibition assays. Oncotarget, 2014, 5, 659-666.	1.8	5
56	The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: b, i and h. Biochemical Journal, 2014, 458, 213-224.	3.7	16
57	The Pathogenic Mechanism of the Mycobacterium ulcerans Virulence Factor, Mycolactone, Depends on Blockade of Protein Translocation into the ER. PLoS Pathogens, 2014, 10, e1004061.	4.7	129
58	TRANS PROF DB: A new resource for sharing translational profiles. Translation, 2014, 2, e965615.	2.9	0
59	Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson's disease. Nature Cell Biology, 2014, 16, 157-166.	10.3	119
60	elF4G. , 2014, , 163-171.		2
61	Ribosomal Protein S25 Dependency Reveals a Common Mechanism for Diverse Internal Ribosome Entry Sites and Ribosome Shunting. Molecular and Cellular Biology, 2013, 33, 1016-1026.	2.3	97
62	A perspective on mammalian upstream open reading frame function. International Journal of Biochemistry and Cell Biology, 2013, 45, 1690-1700.	2.8	170
63	Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice. Science Translational Medicine, 2013, 5, 206ra138.	12.4	480
64	Active regulator of SIRT1 is required for ribosome biogenesis and function. Nucleic Acids Research, 2013, 41, 4185-4197.	14.5	21
65	Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-α infliximab. Cell Cycle, 2013, 12, 3025-3036.	2.6	18
66	Rapamycin regulates biochemical metabolites. Cell Cycle, 2013, 12, 2454-2467.	2.6	8
67	Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature, 2012, 485, 507-511.	27.8	538
68	RNA Binding Protein/RNA Element Interactions and the Control of Translation. Current Protein and Peptide Science, 2012, 13, 294-304.	1.4	118
69	Failure of Translation of Human Adenovirus mRNA in Murine Cancer Cells Can be Partially Overcome by L4-100K Expression In Vitro and In Vivo. Molecular Therapy, 2012, 20, 1676-1688.	8.2	30
70	REMOVED: Translational profiling of multiple myeloma cell lines RPMI8226 and 8226/R5 to discover novel markers of disease and drug resistance. Toxicology, 2011, 290, 116-117.	4.2	0
71	The biological and therapeutic relevance of mRNA translation in cancer. Nature Reviews Clinical Oncology, 2011, 8, 280-291.	27.6	131
72	The role of IRES <i>trans</i> -acting factors in regulating translation initiation. Biochemical Society Transactions, 2010, 38, 1581-1586.	3.4	104

#	Article	IF	CITATIONS
73	Translation deregulation in B-cell lymphomas. Biochemical Society Transactions, 2010, 38, 1593-1597.	3.4	7
74	Dysregulation of protein synthesis and disease. Journal of Pathology, 2010, 220, 140-151.	4.5	72
75	The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Research, 2010, 38, 5542-5553.	14.5	94
76	p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5375-5380.	7.1	159
77	elF4A Inhibition Allows Translational Regulation of mRNAs Encoding Proteins Involved in Alzheimer's Disease. PLoS ONE, 2010, 5, e13030.	2.5	20
78	The involvement of microRNAs in TypeÂ2 diabetes. Biochemical Society Transactions, 2010, 38, 1565-1570.	3.4	87
79	Translational Regulation of Gene Expression during Conditions of Cell Stress. Molecular Cell, 2010, 40, 228-237.	9.7	607
80	Canonical Initiation Factor Requirements of the Myc Family of Internal Ribosome Entry Segments. Molecular and Cellular Biology, 2009, 29, 1565-1574.	2.3	54
81	Translational reprogramming following UVB irradiation is mediated by DNA-PKcs and allows selective recruitment to the polysomes of mRNAs encoding DNA repair enzymes. Genes and Development, 2009, 23, 1207-1220.	5.9	128
82	The human insulin receptor mRNA contains a functional internal ribosome entry segment. Nucleic Acids Research, 2009, 37, 5881-5893.	14.5	41
83	Co-ordinated regulation of translation following DNA damage. Cell Cycle, 2009, 8, 3067-3068.	2.6	4
84	Chapter 9 Viral Strategies to Subvert the Mammalian Translation Machinery. Progress in Molecular Biology and Translational Science, 2009, 90, 313-367.	1.7	28
85	Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochemical Society Transactions, 2008, 36, 641-647.	3.4	283
86	Reâ€programming of translation following cell stress allows IRESâ€mediated translation to predominate. Biology of the Cell, 2008, 100, 27-38.	2.0	235
87	SF2/ASF TORCs Up Translation. Molecular Cell, 2008, 30, 262-263.	9.7	1
88	Identification of Internal Ribosome Entry Segment (IRES)- <i>trans</i> -Acting Factors for the Myc Family of IRESs. Molecular and Cellular Biology, 2008, 28, 40-49.	2.3	117
89	The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8866-8871.	7.1	167
90	A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Research, 2007, 35, e132.	14.5	81

#	Article	IF	CITATIONS
91	Generation of ÂTAp73 Proteins by Translation from a Putative Internal Ribosome Entry Site. Annals of the New York Academy of Sciences, 2007, 1095, 315-324.	3.8	12
92	Polypyrimidine Tract Binding Protein Regulates IRES-Mediated Gene Expression during Apoptosis. Molecular Cell, 2006, 23, 401-412.	9.7	132
93	A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood, 2006, 107, 2507-2516.	1.4	174
94	Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes and Development, 2005, 19, 1556-1571.	5.9	110
95	The implications of structured 5′ untranslated regions on translation and disease. Seminars in Cell and Developmental Biology, 2005, 16, 39-47.	5.0	296
96	L-Myc protein synthesis is initiated by internal ribosome entry. Rna, 2004, 10, 287-298.	3.5	42
97	Bag-1 Internal Ribosome Entry Segment Activity Is Promoted by Structural Changes Mediated by Poly(rC) Binding Protein 1 and Recruitment of Polypyrimidine Tract Binding Protein 1. Molecular and Cellular Biology, 2004, 24, 5595-5605.	2.3	88
98	Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene, 2004, 23, 3200-3207.	5.9	321
99	Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene, 2003, 22, 8012-8020.	5.9	205
100	The Apaf-1 Internal Ribosome Entry Segment Attains the Correct Structural Conformation for Function via Interactions with PTB and unr. Molecular Cell, 2003, 11, 757-771.	9.7	222
101	Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Research, 2003, 31, 639-646.	14.5	73
102	Aberrant Regulation of Translation Initiation in Tumorigenesis. Current Molecular Medicine, 2003, 3, 597-603.	1.3	21
103	Derivation of a structural model for the c-myc IRES11Edited by J. Karn. Journal of Molecular Biology, 2001, 310, 111-126.	4.2	82
104	The p36 isoform of BAG-1 is translated by internal ribosome entry following heat shock. Oncogene, 2001, 20, 4095-4100.	5.9	80
105	Phosphorylation of elongation factor-2 kinase on serine 499 by cAMP-dependent protein kinase induces Ca2+/calmodulin-independent activity. Biochemical Journal, 2001, 353, 621-626.	3.7	67
106	Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochemical Journal, 2001, 359, 183.	3.7	57
107	Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochemical Journal, 2001, 359, 183-192.	3.7	86
108	Structure of a malaria parasite antigenic determinant displayed on filamentous bacteriophage determined by NMR spectroscopy: Implications for the structure of continuous peptide epitopes of proteins. Protein Science, 2001, 10, 1150-1159.	7.6	21

#	Article	IF	CITATIONS
109	N-myc translation is initiated via an internal ribosome entry segment that displays enhanced activity in neuronal cells. Oncogene, 2001, 20, 2664-2670.	5.9	63
110	Protein Factor Requirements of the Apaf-1 Internal Ribosome Entry Segment: Roles of Polypyrimidine Tract Binding Protein and upstream of N-ras. Molecular and Cellular Biology, 2001, 21, 3364-3374.	2.3	139
111	Initiation of Apaf-1 translation by internal ribosome entry. Oncogene, 2000, 19, 899-905.	5.9	186
112	A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: A novel mechanism of oncogene de-regulation. Oncogene, 2000, 19, 4437-4440.	5.9	133
113	c-Myc Protein Synthesis Is Initiated from the Internal Ribosome Entry Segment during Apoptosis. Molecular and Cellular Biology, 2000, 20, 1162-1169.	2.3	203
114	Translational control of growth factor and proto-oncogene expression. International Journal of Biochemistry and Cell Biology, 1999, 31, 73-86.	2.8	120
115	C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene, 1998, 16, 423-428.	5.9	306
116	Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene, 1998, 17, 769-780.	5.9	169
117	Engineering a peptide epitope display system on filamentous bacteriophage. FEMS Microbiology Reviews, 1995, 17, 25-31.	8.6	40
118	Engineering a peptide epitope display system on filamentous bacteriophage. FEMS Microbiology Reviews, 1995, 17, 25-31.	8.6	1
119	Structural Mimicry and Enhanced Immunogenicity of Peptide Epitopes Displayed on Filamentous Bacteriophage. Journal of Molecular Biology, 1994, 243, 167-172.	4.2	78
120	Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene, 1993, 128, 79-83.	2.2	130
121	Cancer predisposition in bloom's syndrome. BioEssays, 1992, 14, 333-336.	2.5	13
122	Multiple display of foreign peptides on a filamentous bacteriophage. Journal of Molecular Biology, 1991, 220, 821-827.	4.2	291
123	Concomitant reversion of the characteristic phenotypic properties of a cell line of Bloom's syndrome origin. Carcinogenesis, 1989, 10, 217-219.	2.8	10
124	Mammalian DNA Ligases and the Molecular Defect in Bloom's Syndrome. , 1989, , 429-438.		0
125	DNA ligase I deficiency in Bloom's syndrome. Nature, 1987, 325, 355-357.	27.8	174