
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. Journal of the American Chemical Society, 2000, 122, 8168-8179.	6.6	1,915
2	Substrate-directable chemical reactions. Chemical Reviews, 1993, 93, 1307-1370.	23.0	1,413
3	Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angewandte Chemie - International Edition, 2003, 42, 4592-4633.	7.2	1,100
4	A Recyclable Ru-Based Metathesis Catalyst. Journal of the American Chemical Society, 1999, 121, 791-799.	6.6	911
5	The remarkable metal-catalysed olefin metathesis reaction. Nature, 2007, 450, 243-251.	13.7	891
6	Samarium-catalyzed intramolecular Tishchenko reduction of .betahydroxy ketones. A stereoselective approach to the synthesis of differentiated anti 1,3-diol monoesters. Journal of the American Chemical Society, 1990, 112, 6447-6449.	6.6	414
7	A Recyclable Chiral Ru Catalyst for Enantioselective Olefin Metathesis. Efficient Catalytic Asymmetric Ring-Opening/Cross Metathesis in Air. Journal of the American Chemical Society, 2002, 124, 4954-4955.	6.6	404
8	Catalytic Z-selective olefin cross-metathesis for natural product synthesis. Nature, 2011, 471, 461-466.	13.7	359
9	A Readily Available Chiral Ag-Based N-Heterocyclic Carbene Complex for Use in Efficient and Highly Enantioselective Ru-Catalyzed Olefin Metathesis and Cu-Catalyzed Allylic Alkylation Reactions. Journal of the American Chemical Society, 2005, 127, 6877-6882.	6.6	354
10	Efficient Boronâ^'Copper Additions to Aryl-Substituted Alkenes Promoted by NHCâ^'Based Catalysts. Enantioselective Cu-Catalyzed Hydroboration Reactions. Journal of the American Chemical Society, 2009, 131, 3160-3161.	6.6	330
11	Ru complexes bearing bidentate carbenes: from innocent curiosity to uniquely effective catalysts for olefin metathesis. Organic and Biomolecular Chemistry, 2004, 2, 8.	1.5	325
12	Catalytic Asymmetric Olefin Metathesis. Chemistry - A European Journal, 2001, 7, 945-950.	1.7	320
13	Efficient Câ^'B Bond Formation Promoted by N-Heterocyclic Carbenes: Synthesis of Tertiary and Quaternary B-Substituted Carbons through Metal-Free Catalytic Boron Conjugate Additions to Cyclic and Acyclic α,β-Unsaturated Carbonyls. Journal of the American Chemical Society, 2009, 131, 7253-7255.	6.6	302
14	Highly Selective Methods for Synthesis of Internal (α-) Vinylboronates through Efficient NHC–Cu-Catalyzed Hydroboration of Terminal Alkynes. Utility in Chemical Synthesis and Mechanistic Basis for Selectivity. Journal of the American Chemical Society, 2011, 133, 7859-7871.	6.6	282
15	Discovery of Chiral Catalysts through Ligand Diversity: Ti-Catalyzed Enantioselective Addition of TMSCN tomeso Epoxides. Angewandte Chemie International Edition in English, 1996, 35, 1668-1671.	4.4	279
16	Enantioselective Conjugate Silyl Additions to Cyclic and Acyclic Unsaturated Carbonyls Catalyzed by Cu Complexes of Chiral N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2010, 132, 2898-2900.	6.6	278
17	Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis. Nature, 2008, 456, 933-937.	13.7	271
18	Enantioselective Synthesis of Boron-Substituted Quaternary Carbons by NHCâ^'Cu-Catalyzed Boronate Conjugate Additions to Unsaturated Carboxylic Esters, Ketones, or Thioesters. Journal of the American Chemical Society, 2010, 132, 10630-10633.	6.6	267

#	Article	IF	CITATIONS
19	Modular Peptide-Based Phosphine Ligands in Asymmetric Catalysis:  Efficient and Enantioselective Cu-Catalyzed Conjugate Additions to Five-, Six-, and Seven-Membered Cyclic Enones. Journal of the American Chemical Society, 2001, 123, 755-756.	6.6	253
20	NHCâ€Cuâ€Catalyzed Enantioselective Hydroboration of Acyclic and Exocyclic 1,1â€Disubstituted Aryl Alkenes. Angewandte Chemie - International Edition, 2011, 50, 7079-7082.	7.2	243
21	Chiral Ru-Based Complexes for Asymmetric Olefin Metathesis:Â Enhancement of Catalyst Activity through Steric and Electronic Modifications. Journal of the American Chemical Society, 2003, 125, 12502-12508.	6.6	241
22	Bidentate NHC-Based Chiral Ligands for Efficient Cu-Catalyzed Enantioselective Allylic Alkylations:Â Structure and Activity of an Air-Stable Chiral Cu Complex. Journal of the American Chemical Society, 2004, 126, 11130-11131.	6.6	237
23	Ti-Catalyzed Enantioselective Addition of Cyanide to Imines. A Practical Synthesis of Optically Pure α-Amino Acids. Journal of the American Chemical Society, 1999, 121, 4284-4285.	6.6	232
24	Enantioselective CC and CH Bond Formation Mediated or Catalyzed by Chiral ebthi Complexes of Titanium and Zirconium. Angewandte Chemie International Edition in English, 1996, 35, 1262-1284.	4.4	231
25	Catalytic Enantioselective Ring-Closing Metathesis by a Chiral Biphenâ^'Mo Complex. Journal of the American Chemical Society, 1998, 120, 4041-4042.	6.6	231
26	Vicinal Diboronates in High Enantiomeric Purity through Tandem Site-Selective NHCâ^'Cu-Catalyzed Boronâ^'Copper Additions to Terminal Alkynes. Journal of the American Chemical Society, 2009, 131, 18234-18235.	6.6	230
27	A Practical Method for Enantioselective Synthesis of All-Carbon Quaternary Stereogenic Centers through NHC-Cu-Catalyzed Conjugate Additions of Alkyl- and Arylzinc Reagents to I²-Substituted Cyclic Enones. Journal of the American Chemical Society, 2006, 128, 7182-7184.	6.6	228
28	<i>Z</i> -Selective Olefin Metathesis Processes Catalyzed by a Molybdenum Hexaisopropylterphenoxide Monopyrrolide Complex. Journal of the American Chemical Society, 2009, 131, 7962-7963.	6.6	224
29	Enantioselective Synthesis of Allylboronates Bearing a Tertiary or Quaternary B-Substituted Stereogenic Carbon by NHC-Cu-Catalyzed Substitution Reactions. Journal of the American Chemical Society, 2010, 132, 10634-10637.	6.6	220
30	All-Carbon Quaternary Stereogenic Centers by Enantioselective Cu-Catalyzed Conjugate Additions Promoted by a Chiral N-Heterocyclic Carbene. Angewandte Chemie - International Edition, 2007, 46, 1097-1100.	7.2	219
31	Highly <i>Z</i> - and Enantioselective Ring-Opening/Cross-Metathesis Reactions Catalyzed by Stereogenic-at-Mo Adamantylimido Complexes. Journal of the American Chemical Society, 2009, 131, 3844-3845.	6.6	215
32	Multifunctional organoboron compounds for scalable natural product synthesis. Nature, 2014, 513, 367-374.	13.7	214
33	Enantioselective silyl protection of alcohols catalysed by an amino-acid-based small molecule. Nature, 2006, 443, 67-70.	13.7	208
34	Synthesis of macrocyclic natural products by catalyst-controlled stereoselective ring-closing metathesis. Nature, 2011, 479, 88-93.	13.7	208
35	Highly Site- and Enantioselective Cu-Catalyzed Allylic Alkylation Reactions with Easily Accessible Vinylaluminum Reagents. Journal of the American Chemical Society, 2008, 130, 446-447.	6.6	207
36	Highly <i>Z</i> -Selective Metathesis Homocoupling of Terminal Olefins. Journal of the American Chemical Society, 2009, 131, 16630-16631.	6.6	204

#	Article	IF	CITATIONS
37	Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides, and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2012, 134, 8277-8285.	6.6	204
38	Readily Accessible and Easily Modifiable Ru-Based Catalysts for Efficient and <i>Z</i> -Selective Ring-Opening Metathesis Polymerization and Ring-Opening/Cross-Metathesis. Journal of the American Chemical Society, 2013, 135, 10258-10261.	6.6	201
39	Simple organic molecules as catalysts for enantioselective synthesis of amines and alcohols. Nature, 2013, 494, 216-221.	13.7	199
40	Cu-Catalyzed Asymmetric Conjugate Additions of Alkylzinc Reagents to Acyclic Aliphatic Enones. Journal of the American Chemical Society, 2002, 124, 779-781.	6.6	196
41	Cuâ€Catalyzed Chemoselective Preparation of 2â€(Pinacolato)boronâ€Substituted Allylcopper Complexes and their Inâ€Situ Siteâ€, Diastereoâ€, and Enantioselective Additions to Aldehydes and Ketones. Angewandte Chemie - International Edition, 2013, 52, 5046-5051.	7.2	194
42	Diastereo- and Enantioselective Reactions of Bis(pinacolato)diboron, 1,3-Enynes, and Aldehydes Catalyzed by an Easily Accessible Bisphosphine–Cu Complex. Journal of the American Chemical Society, 2014, 136, 11304-11307.	6.6	193
43	Site- and Enantioselective Formation of Allene-Bearing Tertiary or Quaternary Carbon Stereogenic Centers through NHC–Cu-Catalyzed Allylic Substitution. Journal of the American Chemical Society, 2012, 134, 1490-1493.	6.6	191
44	Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metalâ€Based Complexes that Deliver High Enantioselectivity and More. Angewandte Chemie - International Edition, 2010, 49, 34-44.	7.2	190
45	Ag-Catalyzed Asymmetric Mannich Reactions of Enol Ethers with Aryl, Alkyl, Alkenyl, and Alkynyl Imines. Journal of the American Chemical Society, 2004, 126, 3734-3735.	6.6	187
46	High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis. Nature, 2015, 517, 181-186.	13.7	184
47	Enantioselective Synthesis of All arbon Quaternary Stereogenic Centers by Catalytic Asymmetric Conjugate Additions of Alkyl and Aryl Aluminum Reagents to Fiveâ€, Sixâ€, and Sevenâ€Memberedâ€Ring βâ€Substituted Cyclic Enones. Angewandte Chemie - International Edition, 2008, 47, 7358-7362.	7.2	182
48	α-Selective Ni-Catalyzed Hydroalumination of Aryl- and Alkyl-Substituted Terminal Alkynes: Practical Syntheses of Internal Vinyl Aluminums, Halides, or Boronates. Journal of the American Chemical Society, 2010, 132, 10961-10963.	6.6	181
49	Catalytic Asymmetric Alkylations of Ketoimines. Enantioselective Synthesis of <i>N</i> -Substituted Quaternary Carbon Stereogenic Centers by Zr-Catalyzed Additions of Dialkylzinc Reagents to Aryl-, Alkyl-, and Trifluoroalkyl-Substituted Ketoimines. Journal of the American Chemical Society, 2008, 130, 5530-5541.	6.6	180
50	Evolution of Catalytic Stereoselective Olefin Metathesis: From Ancillary Transformation to Purveyor of Stereochemical Identity. Journal of Organic Chemistry, 2014, 79, 4763-4792.	1.7	180
51	Modular Pyridinyl Peptide Ligands in Asymmetric Catalysis: Enantioselective Synthesis of Quaternary Carbon Atoms Through Copper-Catalyzed Allylic Substitutions. Angewandte Chemie - International Edition, 2001, 40, 1456-1460.	7.2	172
52	Enantioselective Synthesis of Allylsilanes Bearing Tertiary and Quaternary Si-Substituted Carbons through Cu-Catalyzed Allylic Alkylations with Alkylzinc and Arylzinc Reagents. Angewandte Chemie - International Edition, 2007, 46, 4554-4558.	7.2	170
53	Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis. Journal of the American Chemical Society, 2009, 131, 943-953.	6.6	166
54	Chiral Moâ^'Binol Complexes:Â Activity, Synthesis, and Structure. Efficient Enantioselective Six-Membered Ring Synthesis through Catalytic Metathesis. Journal of the American Chemical Society, 1999, 121, 8251-8259.	6.6	165

#	Article	IF	CITATIONS
55	Synthesis of Quaternary Carbon Stereogenic Centers through Enantioselective Cu-Catalyzed Allylic Substitutions with Vinylaluminum Reagents. Journal of the American Chemical Society, 2010, 132, 14315-14320.	6.6	165
56	Mo-Catalyzed Asymmetric Synthesis of Dihydrofurans. Catalytic Kinetic Resolution and Enantioselective Desymmetrization through Ring-Closing Metathesis. Journal of the American Chemical Society, 1998, 120, 9720-9721.	6.6	164
57	Ag-Catalyzed Diastereo- and Enantioselective Vinylogous Mannich Reactions of α-Ketoimine Esters. Development of a Method and Investigation of its Mechanism. Journal of the American Chemical Society, 2009, 131, 570-576.	6.6	164
58	High-Throughput Strategies for the Discovery of Catalysts. Chemistry - A European Journal, 1998, 4, 1885-1889.	1.7	162
59	Three-Component Catalytic Asymmetric Synthesis of Aliphatic Amines. Journal of the American Chemical Society, 2001, 123, 10409-10410.	6.6	162
60	Chiral N-Heterocyclic Carbenes in Natural Product Synthesis: Application of Ru-Catalyzed Asymmetric Ring-Opening/Cross-Metathesis and Cu-Catalyzed Allylic Alkylation to Total Synthesis of Baconipyroneâ€C. Angewandte Chemie - International Edition, 2007, 46, 3860-3864.	7.2	162
61	Small peptides as ligands for catalytic asymmetric alkylations of olefins. Rational design of catalysts or of searches that lead to them?. Chemical Communications, 2004, , 1779.	2.2	161
62	Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature, 2016, 531, 459-465.	13.7	159
63	Immobilization of Olefin Metathesis Catalysts on Monolithic Sol-Gel: Practical, Efficient, and Easily Recyclable Catalysts for Organic and Combinatorial Synthesis. Angewandte Chemie - International Edition, 2001, 40, 4251-4256.	7.2	158
64	Cascade Catalysis in Synthesis. An Enantioselective Route to Sch 38516 (and Fluvirucin B1) Aglycon Macrolactam. Journal of the American Chemical Society, 1995, 117, 2943-2944.	6.6	157
65	Zr-Catalyzed Kinetic Resolution of Allylic Ethers and Mo-Catalyzed Chromene Formation in Synthesis. Enantioselective Total Synthesis of the Antihypertensive Agent (S,R,R,R)-Nebivolol. Journal of the American Chemical Society, 1998, 120, 8340-8347.	6.6	154
66	Chromenes through Metal-Catalyzed Reactions of Styrenyl Ethers. Mechanism and Utility in Synthesis. Journal of the American Chemical Society, 1998, 120, 2343-2351.	6.6	154
67	Efficient and Practical Ag-Catalyzed Cycloadditions between Arylimines and the Danishefsky Diene. Journal of the American Chemical Society, 2003, 125, 4018-4019.	6.6	153
68	Cu-Catalyzed Asymmetric Allylic Alkylations of Aromatic and Aliphatic Phosphates with Alkylzinc Reagents. An Effective Method for Enantioselective Synthesis of Tertiary and Quaternary Carbons. Journal of the American Chemical Society, 2004, 126, 10676-10681.	6.6	150
69	Enantioselective Synthesis of Nitroalkanes Bearing All-Carbon Quaternary Stereogenic Centers through Cu-Catalyzed Asymmetric Conjugate Additions. Journal of the American Chemical Society, 2005, 127, 4584-4585.	6.6	150
70	Metal-Free Catalytic C–Si Bond Formation in an Aqueous Medium. Enantioselective NHC-Catalyzed Silyl Conjugate Additions to Cyclic and Acyclic α,β-Unsaturated Carbonyls. Journal of the American Chemical Society, 2011, 133, 7712-7715.	6.6	149
71	Catalytic Enantioselective Alkylations of Tetrasubstituted Olefins. Synthesis of All-Carbon Quaternary Stereogenic Centers through Cu-Catalyzed Asymmetric Conjugate Additions of Alkylzinc Reagents to Enones. Journal of the American Chemical Society, 2005, 127, 14988-14989.	6.6	148
72	Efficient Enantioselective Synthesis of Functionalized Tetrahydropyrans by Ru-Catalyzed Asymmetric Ring-Opening Metathesis/Cross-Metathesis (AROM/CM). Journal of the American Chemical Society, 2004, 126, 12288-12290.	6.6	145

#	Article	IF	CITATIONS
73	Enantioselective Synthesis of Propargylamines through Zr-Catalyzed Addition of Mixed Alkynylzinc Reagents to Arylimines. Organic Letters, 2003, 5, 3273-3275.	2.4	144
74	Search for Chiral Catalysts Through Ligand Diversity: Substrate-Specific Catalysts and Ligand Screening on Solid Phase. Angewandte Chemie International Edition in English, 1997, 36, 1704-1707.	4.4	143
75	Three-Component Enantioselective Synthesis of Propargylamines through Zr-Catalyzed Additions of Alkyl Zinc Reagents to Alkynylimines. Angewandte Chemie - International Edition, 2003, 42, 4244-4247.	7.2	142
76	Enantioselective Synthesis of Trisubstituted Allenyl–B(pin) Compounds by Phosphine–Cu-Catalyzed 1,3-Enyne Hydroboration. Insights Regarding Stereochemical Integrity of Cu–Allenyl Intermediates. Journal of the American Chemical Society, 2018, 140, 2643-2655.	6.6	142
77	Aluminum-Catalyzed Asymmetric Addition of TMSCN to Aromatic and Aliphatic Ketones Promoted by an Easily Accessible and Recyclable Peptide Ligand. Angewandte Chemie - International Edition, 2002, 41, 1009-1012.	7.2	140
78	Enantioselective Synthesis of Alkyne-Substituted Quaternary Carbon Stereogenic Centers through NHCâ^'Cu-Catalyzed Allylic Substitution Reactions with (<i>i</i> Bu) ₂ (Alkynyl)aluminum Reagents. Journal of the American Chemical Society, 2011, 133, 4778-4781.	6.6	136
79	Exceptionally <i>E</i> ―and βâ€Selective NHC–Cuâ€Catalyzed Protoâ€Silyl Additions to Terminal Alkynes and Site―and Enantioselective Protoâ€Boryl Additions to the Resulting Vinylsilanes: Synthesis of Enantiomerically Enriched Vicinal and Geminal Borosilanes. Chemistry - A European Journal, 2013, 19, 3204-3214.	1.7	136
80	Enantioselective Synthesis of Arylamines Through Zr-Catalyzed Addition of Dialkylzincs to Imines. Reaction Development by Screening of Parallel Libraries. Journal of the American Chemical Society, 2001, 123, 984-985.	6.6	135
81	Mechanism of Enantioselective Ti-Catalyzed Strecker Reaction:Â Peptide-Based Metal Complexes as Bifunctional Catalysts. Journal of the American Chemical Society, 2001, 123, 11594-11599.	6.6	135
82	Zirconium-catalyzed asymmetric carbomagnesation. Journal of the American Chemical Society, 1993, 115, 6997-6998.	6.6	133
83	Stereogenic-at-Metal Zn- and Al-Based N-Heterocyclic Carbene (NHC) Complexes as Bifunctional Catalysts in Cu-Free Enantioselective Allylic Alkylations. Journal of the American Chemical Society, 2009, 131, 11625-11633.	6.6	133
84	A Readily Available and User-Friendly Chiral Catalyst for Efficient Enantioselective Olefin Metathesis. Angewandte Chemie - International Edition, 2001, 40, 1452-1456.	7.2	132
85	Kinetic Resolution of 1,2â€Điols through Highly Site―and Enantioselective Catalytic Silylation. Angewandte Chemie - International Edition, 2007, 46, 8471-8474.	7.2	132
86	Molybdenum chloride catalysts for Z-selective olefin metathesis reactions. Nature, 2017, 542, 80-85.	13.7	132
87	A Highly Efficient and Practical Method for Catalytic Asymmetric Vinylogous Mannich (AVM) Reactions. Angewandte Chemie - International Edition, 2006, 45, 7230-7233.	7.2	131
88	Enantioselective Synthesis of Unsaturated Cyclic Tertiary Ethers By Mo-Catalyzed Olefin Metathesis. Journal of the American Chemical Society, 2001, 123, 3139-3140.	6.6	130
89	Three-Component Ag-Catalyzed Enantioselective Vinylogous Mannich and Aza-Dielsâ^'Alder Reactions with Alkyl-Substituted Aldehydes. Journal of the American Chemical Society, 2008, 130, 17961-17969.	6.6	130
90	Tandem Catalytic Asymmetric Ring-Opening Metathesis/Ring-Closing Metathesis. Journal of the American Chemical Society, 2000, 122, 1828-1829.	6.6	129

#	Article	IF	CITATIONS
91	Stereoisomerically Pure Trisubstituted Vinylaluminum Reagents and their Utility in Copperâ€Catalyzed Enantioselective Synthesis of 1,4â€Dienes Containing <i>Z</i> or <i>E</i> Alkenes. Angewandte Chemie - International Edition, 2010, 49, 419-423.	7.2	129
92	Enantioselective Total Synthesis of Erogorgiaene:Â Applications of Asymmetric Cu-Catalyzed Conjugate Additions of Alkylzincs to Acyclic Enones. Journal of the American Chemical Society, 2004, 126, 96-101.	6.6	128
93	Enantioselective Synthesis of Pâ€Stereogenic Phosphinates and Phosphine Oxides by Molybdenumâ€Catalyzed Asymmetric Ringâ€Closing Metathesis. Angewandte Chemie - International Edition, 2009, 48, 762-766.	7.2	126
94	<i>Z</i> -Selective Olefin Metathesis Reactions Promoted by Tungsten Oxo Alkylidene Complexes. Journal of the American Chemical Society, 2011, 133, 20754-20757.	6.6	125
95	Stereoselective formation of carbon-carbon bonds through metal catalysis. The zirconium-catalyzed ethylmagnesiation reaction. Journal of the American Chemical Society, 1991, 113, 5079-5080.	6.6	124
96	Highly Enantioselective Cu-Catalyzed Conjugate Additions of Dialkylzinc Reagents to Unsaturated Furanones and Pyranones: Preparation of Air-Stable and Catalytically Active Cu-Peptide Complexes. Angewandte Chemie - International Edition, 2005, 44, 5306-5310.	7.2	124
97	Formation of Vinyl-, Vinylhalide- or Acyl-Substituted Quaternary Carbon Stereogenic Centers through NHCâ^²Cu-Catalyzed Enantioselective Conjugate Additions of Si-Containing Vinylaluminums to β-Substituted Cyclic Enones. Journal of the American Chemical Society, 2011, 133, 736-739.	6.6	124
98	Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups. Nature, 2016, 537, 387-393.	13.7	124
99	Catalytic S _N 2′―and Enantioselective Allylic Substitution with a Diborylmethane Reagent and Application in Synthesis. Angewandte Chemie - International Edition, 2016, 55, 3455-3458.	7.2	124
100	Efficient Catalytic Enantioselective Synthesis of Unsaturated Amines:Â Preparation of Small- and Medium-Ring Cyclic Amines through Mo-Catalyzed Asymmetric Ring-Closing Metathesis in the Absence of Solvent. Journal of the American Chemical Society, 2002, 124, 6991-6997.	6.6	123
101	Applications of Zr-Catalyzed Carbomagnesation and Mo-Catalyzed Macrocyclic Ring Closing Metathesis in Asymmetric Synthesis. Enantioselective Total Synthesis of Sch 38516 (Fluvirucin B1). Journal of the American Chemical Society, 1997, 119, 10302-10316.	6.6	122
102	Directed Catalytic Asymmetric Olefin Metathesis. Selectivity Control by Enoate and Ynoate Groups in Ru-Catalyzed Asymmetric Ring-Opening/Cross-Metathesis. Journal of the American Chemical Society, 2007, 129, 3824-3825.	6.6	121
103	Mechanism-based enhancement of scope and enantioselectivity for reactions involving a copper-substituted stereogenic carbon centre. Nature Chemistry, 2018, 10, 99-108.	6.6	121
104	Enantioselective Total Synthesis of Clavirolide C. Applications of Cu-Catalyzed Asymmetric Conjugate Additions and Ru-Catalyzed Ring-Closing Metathesis. Journal of the American Chemical Society, 2008, 130, 12904-12906.	6.6	120
105	Quaternary Carbon Stereogenic Centers through Copperâ€Catalyzed Enantioselective Allylic Substitutions with Readily Accessible Aryl―or Heteroaryllithium Reagents and Aluminum Chlorides. Angewandte Chemie - International Edition, 2010, 49, 8370-8374.	7.2	119
106	Ti-Catalyzed Regio- and Enantioselective Synthesis of Unsaturated α-Amino Nitriles, Amides, and Acids. Catalyst Identification through Screening of Parallel Libraries. Journal of the American Chemical Society, 2000, 122, 2657-2658.	6.6	118
107	Synthesis of <i>Z</i> -(Pinacolato)allylboron and <i>Z</i> -(Pinacolato)alkenylboron Compounds through Stereoselective Catalytic Cross-Metathesis. Journal of the American Chemical Society, 2013, 135, 6026-6029.	6.6	118
108	Enantioselective Synthesis of α-Alkyl-β,γ-unsaturated Esters through Efficient Cu-Catalyzed Allylic Alkylations. Journal of the American Chemical Society, 2003, 125, 4690-4691.	6.6	117

#	Article	IF	CITATIONS
109	Cuâ^'Catalyzed Enantioselective Conjugate Addition of Alkylzincs to Cyclic Nitroalkenes:Â Catalytic Asymmetric Synthesis of Cyclic α-Substituted Ketones. Journal of the American Chemical Society, 2002, 124, 8192-8193.	6.6	116
110	Ethenolysis Reactions Catalyzed by Imido Alkylidene Monoaryloxide Monopyrrolide (MAP) Complexes of Molybdenum. Journal of the American Chemical Society, 2009, 131, 10840-10841.	6.6	116
111	H-Bonding as a Control Element in Stereoselective Ru-Catalyzed Olefin Metathesis. Journal of the American Chemical Society, 2009, 131, 8378-8379.	6.6	115
112	Catalytic and Enantioselective Route to Medium-Ring Heterocycles. Asymmetric Zirconium-Catalyzed Ethylmagnesation of Seven- and Eight-Membered Rings. Journal of the American Chemical Society, 1996, 118, 4291-4298.	6.6	114
113	Catalytic Asymmetric Ring-Opening Metathesis/Cross Metathesis (AROM/CM) Reactions. Mechanism and Application to Enantioselective Synthesis of Functionalized Cyclopentanes. Journal of the American Chemical Society, 2001, 123, 7767-7778.	6.6	114
114	Kinetically controlled <i>E</i> -selective catalytic olefin metathesis. Science, 2016, 352, 569-575.	6.0	114
115	Enantioselective Synthesis of Homoallylic Amines through Reactions of (Pinacolato)allylborons with Aryl-, Heteroaryl-, Alkyl-, or Alkene-Substituted Aldimines Catalyzed by Chiral <i>C</i> ₁ -Symmetric NHCâ^Cu Complexes. Journal of the American Chemical Society, 2011, 133. 3332-3335.	6.6	113
116	Lewis Base Activation of Grignard Reagents withN-Heterocyclic Carbenes. Cu-Free Catalytic Enantioselective Additions to γ-Chloro-α,β-Unsaturated Esters. Journal of the American Chemical Society, 2006, 128, 15604-15605.	6.6	111
117	Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions. Nature Chemistry, 2016, 8, 768-777.	6.6	111
118	The First Polymer-Supported and Recyclable Chiral Catalyst for Enantioselective Olefin Metathesis. Angewandte Chemie - International Edition, 2002, 41, 589-593.	7.2	108
119	Efficient and Selective Formation of Macrocyclic Disubstituted <i>Z</i> Alkenes by Ringâ€Closing Metathesis (RCM) Reactions Catalyzed by Moâ€or Wâ€Based Monoaryloxide Pyrrolide (MAP) Complexes: Applications to Total Syntheses of Epilachnene, Yuzu Lactone, Ambrettolide, Epothilone C, and Nakadomarin A. Chemistry - A European Journal, 2013, 19, 2726-2740.	1.7	108
120	Catalytic Enantioselective Conjugate Additions of (pin)Bâ€Substituted Allylcopper Compounds Generated in situ from Butadiene or Isoprene. Angewandte Chemie - International Edition, 2016, 55, 9997-10002.	7.2	108
121	Efficient Cu-Catalyzed Asymmetric Conjugate Additions of Alkylzincs to Trisubstituted Cyclic Enones. Journal of the American Chemical Society, 2002, 124, 13362-13363.	6.6	107
122	Cu-Catalyzed Enantioselective Conjugate Additions of Alkyl Zinc Reagents to Unsaturated N-Acyloxazolidinones Promoted by a Chiral Triamide Phosphane. Angewandte Chemie - International Edition, 2003, 42, 1276-1279.	7.2	107
123	Ru-Catalyzed Rearrangement of Styrenyl Ethers. Enantioselective Synthesis of Chromenes through Zr- and Ru-Catalyzed Processes. Journal of the American Chemical Society, 1997, 119, 1488-1489.	6.6	106
124	Tandem Catalytic Asymmetric Ring-Opening Metathesis/Cross Metathesis. Journal of the American Chemical Society, 1999, 121, 11603-11604.	6.6	106
125	Dipyrrolyl Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2006, 128, 16373-16375.	6.6	105
126	Catalytic diastereo- and enantioselective additions of versatile allyl groups to N–H ketimines. Nature Chemistry, 2017, 9, 1269-1275.	6.6	105

#	Article	IF	CITATIONS
127	Enantioselective Total Synthesis of Antifungal Agent Sch 38516. Journal of the American Chemical Society, 1996, 118, 10926-10927.	6.6	104
128	Broadly Applicable <i>Z</i> ―and Diastereoselective Ringâ€Opening/Crossâ€Metathesis Catalyzed by a Dithiolate Ru Complex. Angewandte Chemie - International Edition, 2014, 53, 1968-1972.	7.2	104
129	NHC–Cu-Catalyzed Protoboration of Monosubstituted Allenes. Ligand-Controlled Site Selectivity, Application to Synthesis and Mechanism. Organic Letters, 2013, 15, 1414-1417.	2.4	103
130	Monodentate Non- <i>C</i> ₂ -symmetric Chiral <i>N</i> -Heterocyclic Carbene Complexes for Enantioselective Synthesis. Cu-Catalyzed Conjugate Additions of Aryl- and Alkenylsilylfluorides to Cyclic Enones. Journal of Organic Chemistry, 2009, 74, 4455-4462.	1.7	102
131	Catalytic Enantioselective Silylation of Acyclic and Cyclic Triols: Application to Total Syntheses of Cleroindicinsâ€D, F, and C. Angewandte Chemie - International Edition, 2009, 48, 547-550.	7.2	101
132	Catalytic Enantioselective Boryl and Silyl Substitution with Trifluoromethyl Alkenes: Scope, Utility, and Mechanistic Nuances of Cu–F β-Elimination. Journal of the American Chemical Society, 2019, 141, 19917-19934.	6.6	101
133	A Broadly Applicable NHC–Cu-Catalyzed Approach for Efficient, Site-, and Enantioselective Coupling of Readily Accessible (Pinacolato)alkenylboron Compounds to Allylic Phosphates and Applications to Natural Product Synthesis. Journal of the American Chemical Society, 2014, 136, 2149-2161.	6.6	100
134	Regarding the Mechanism of Olefin Metathesis with Solâ^'Gel-Supported Ru-Based Complexes Bearing a Bidentate Carbene Ligand. Spectroscopic Evidence for Return of the Propagating Ru Carbene. Journal of the American Chemical Society, 2005, 127, 4510-4517.	6.6	99
135	Alkylidene and Metalacyclic Complexes of Tungsten that Contain a Chiral Biphenoxide Ligand. Synthesis, Asymmetric Ring-Closing Metathesis, and Mechanistic Investigations. Journal of the American Chemical Society, 2003, 125, 2652-2666.	6.6	98
136	Mechanism of NHC-Catalyzed Conjugate Additions of Diboron and Borosilane Reagents to α,β-Unsaturated Carbonyl Compounds. Journal of the American Chemical Society, 2015, 137, 10585-10602.	6.6	98
137	Enantioselective Synthesis of Cyclic Amides and Amines through Mo-Catalyzed Asymmetric Ring-Closing Metathesis. Journal of the American Chemical Society, 2005, 127, 8526-8533.	6.6	96
138	Enol Ethers as Substrates for EfficientZ- and Enantioselective Ring-Opening/Cross-Metathesis Reactions Promoted by Stereogenic-at-Mo Complexes: Utility in Chemical Synthesis and Mechanistic Attributes. Journal of the American Chemical Society, 2012, 134, 2788-2799.	6.6	96
139	Zirconium-Catalyzed Kinetic Resolution of Pyrans. Journal of the American Chemical Society, 1994, 116, 3123-3124.	6.6	95
140	Al-Catalyzed Enantioselective Alkylation of α-Ketoesters by Dialkylzinc Reagents. Enhancement of Enantioselectivity and Reactivity by an Achiral Lewis Base Additive. Journal of the American Chemical Society, 2005, 127, 15453-15456.	6.6	95
141	<i>Endo</i> -Selective Enyne Ring-Closing Metathesis Promoted by Stereogenic-at-Mo Monoalkoxide and Monoaryloxide Complexes. Efficient Synthesis of Cyclic Dienes Not Accessible through Reactions with Ru Carbenes. Journal of the American Chemical Society, 2009, 131, 10652-10661.	6.6	94
142	Enhancement of Enantioselectivity by THF in Asymmetric Mo-Catalyzed Olefin Metathesis. Catalytic Enantioselective Synthesis of Cyclic Tertiary Ethers and Spirocycles. Journal of the American Chemical Society, 2002, 124, 10779-10784.	6.6	92
143	Enantioselective Synthesis of Boron‣ubstituted Quaternary Carbon Stereogenic Centers through NHC atalyzed Conjugate Additions of (Pinacolato)boron Units to Enones. Angewandte Chemie - International Edition, 2014, 53, 3387-3391.	7.2	92
144	Enantioselective Synthesis of Medium-Ring Heterocycles, Tertiary Ethers, and Tertiary Alcohols by Moâ^'Catalyzed Ring-Closing Metathesis. Journal of the American Chemical Society, 2002, 124, 2868-2869.	6.6	91

#	Article	IF	CITATIONS
145	Copperâ€Catalyzed Enantioselective Allylic Substitution with Readily Accessible Carbonyl―and Acetalâ€Containing Vinylboron Reagents. Angewandte Chemie - International Edition, 2012, 51, 6613-6617.	7.2	91
146	Zirconium-catalyzed ethylmagnesiation of hydroxylated terminal alkenes; a catalytic and diastereoselective carbon-carbon bond-forming reaction. Journal of the American Chemical Society, 1993, 115, 6614-6624.	6.6	90
147	Entwicklung von chiralen Katalysatoren durch kombinatorische Ligandenvariation – Tiâ€katalysierte enantioselektive Addition von TMSCN an <i>meso</i> â€Epoxide. Angewandte Chemie, 1996, 108, 1776-1779.	1.6	89
148	Practical and Highly Enantioselective Synthesis of β-Alkynyl-β-amino Esters through Ag-Catalyzed Asymmetric Mannich Reactions of Silylketene Acetals and Alkynyl Imines. Organic Letters, 2005, 7, 2711-2713.	2.4	89
149	Ni-Catalyzed Asymmetric Addition of Grignard Reagents to Unsaturated Cyclic Acetals. The Influence of Added Phosphine on Enantioselectivity. Journal of the American Chemical Society, 1998, 120, 7649-7650.	6.6	88
150	Synthesis of Molybdenum Imido Alkylidene Complexes That Contain 3,3'-Dialkyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diolates (Alkyl = t-Bu, Adamantyl). Catalysts for Enantioselective Olefin Metathesis Reactions. Organometallics, 2000, 19, 3700-3715.	1.1	88
151	NHC–Cu-Catalyzed Silyl Conjugate Additions to Acyclic and Cyclic Dienones and Dienoates. Efficient Site-, Diastereo- and Enantioselective Synthesis of Carbonyl-Containing Allylsilanes. Organometallics, 2012, 31, 7823-7826.	1.1	88
152	Synthesis of Monoalkoxide Monopyrrolyl Complexes Mo(NR)(CHRâ€~)(ORâ€~Ââ€~)(pyrrolyl): Enyne Metathesis with High Oxidation State Catalysts. Journal of the American Chemical Society, 2007, 129, 12654-12655.	6.6	87
153	Isolation of Pure Disubstituted <i>E</i> Olefins through Mo-Catalyzed <i>Z</i> -Selective Ethenolysis of Stereoisomeric Mixtures. Journal of the American Chemical Society, 2011, 133, 11512-11514.	6.6	87
154	Efficient Enantioselective Synthesis of Piperidines through Catalytic Asymmetric Ring-Opening/Cross-Metathesis Reactions. Angewandte Chemie - International Edition, 2007, 46, 4534-4538.	7.2	86
155	The mechanism of the zirconium-catalyzed carbomagnesiation reaction. Efficient and selective catalytic carbomagnesiation with higher alkyls of magnesium. Journal of the American Chemical Society, 1992, 114, 6692-6697.	6.6	85
156	Asymmetric Catalysis Special Feature Part II: Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5805-5809.	3.3	84
157	Z-Selective Metathesis Homocoupling of 1,3-Dienes by Molybdenum and Tungsten Monoaryloxide Pyrrolide (MAP) Complexes. Journal of the American Chemical Society, 2012, 134, 11334-11337.	6.6	83
158	Molybdenumâ€Based Complexes with Two Aryloxides and a Pentafluoroimido Ligand: Catalysts for Efficient <i>Z</i> â€Selective Synthesis of a Macrocyclic Trisubstituted Alkene by Ringâ€Closing Metathesis. Angewandte Chemie - International Edition, 2013, 52, 1939-1943.	7.2	83
159	Efficient Cu-Catalyzed Asymmetric Conjugate Additions of Alkylzinc Reagents to Aromatic and Aliphatic Acyclic Nitroalkenes. Organic Letters, 2004, 6, 2829-2832.	2.4	82
160	Aluminum-Catalyzed Asymmetric Alkylations of Pyridyl-Substituted Alkynyl Ketones with Dialkylzinc Reagents. Journal of the American Chemical Society, 2008, 130, 9942-9951.	6.6	82
161	Catalytic Enantioselective Protoboration of Disubstituted Allenes. Access to Alkenylboron Compounds in High Enantiomeric Purity. Organic Letters, 2014, 16, 4658-4661.	2.4	82
162	N-Heterocyclic Carbene–Copper-Catalyzed Group-, Site-, and Enantioselective Allylic Substitution with a Readily Accessible Propargyl(pinacolato)boron Reagent: Utility in Stereoselective Synthesis and Mechanistic Attributes. Journal of the American Chemical Society, 2015, 137, 8948-8964.	6.6	82

#	Article	IF	CITATIONS
163	Molybdenum Imido Alkylidene Metathesis Catalysts That Contain Electron-Withdrawing Biphenolates or Binaphtholates. Organometallics, 2007, 26, 2528-2539.	1.1	81
164	Combining NHC–Cu and BrÃ,nsted Base Catalysis: Enantioselective Allylic Substitution/Conjugate Additions with Alkynylaluminum Reagents and Stereospecific Isomerization of the Products to Trisubstituted Allenes. Angewandte Chemie - International Edition, 2013, 52, 7694-7699.	7.2	80
165	Versatile Homoallylic Boronates by Chemoâ€, S _N 2′â€, Diastereo―and Enantioselective Catalytic Sequence of Cuâ^H Addition to Vinylâ€B(pin)/Allylic Substitution. Angewandte Chemie - International Edition, 2017, 56, 821-826.	7.2	78
166	Enantioselective Synthesis of Cyclic Secondary Amines through Mo-Catalyzed Asymmetric Ring-Closing Metathesis (ARCM). Organic Letters, 2003, 5, 4899-4902.	2.4	76
167	Supported Chiral Mo-Based Complexes as Efficient Catalysts for Enantioselective Olefin Metathesis. Journal of the American Chemical Society, 2004, 126, 10945-10953.	6.6	76
168	Kinetically E-selective macrocyclic ring-closing metathesis. Nature, 2017, 541, 380-385.	13.7	76
169	Delayed catalyst function enables direct enantioselective conversion of nitriles to NH ₂ -amines. Science, 2019, 364, 45-51.	6.0	76
170	Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis. Nature, 2017, 552, 347-354.	13.7	75
171	An Enantiomerically Pure Adamantylimido Molybdenum Alkylidene Complex. An Effective New Catalyst for Enantioselective Olefin Metathesis. Journal of the American Chemical Society, 2003, 125, 2591-2596.	6.6	74
172	Comparison of Ru- and Mo-Based Chiral Olefin Metathesis Catalysts. Complementarity in Asymmetric Ring-Opening/Cross-Metathesis Reactions of Oxa- and Azabicycles. Organic Letters, 2007, 9, 2871-2874.	2.4	74
173	Modular Mo-based catalysts for efficient asymmetric olefin metathesis. Catalytic enantioselective synthesis of cyclic ethers and acetals. Tetrahedron Letters, 2000, 41, 9553-9559.	0.7	73
174	Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts. Nature Chemistry, 2013, 5, 768-774.	6.6	73
175	Combinatorial catalyst discovery. Current Opinion in Chemical Biology, 1999, 3, 313-319.	2.8	72
176	Z- and Enantioselective Ring-Opening/Cross-Metathesis with Enol Ethers Catalyzed by Stereogenic-at-Ru Carbenes: Reactivity, Selectivity, and Curtin–Hammett Kinetics. Journal of the American Chemical Society, 2012, 134, 12774-12779.	6.6	72
177	Different Strategies for Designing Dual-Catalytic Enantioselective Processes: From Fully Cooperative to Non-cooperative Systems. Journal of the American Chemical Society, 2019, 141, 17952-17961.	6.6	72
178	Metal-Catalyzed Kinetic Resolution Processes. Current Organic Chemistry, 1998, 2, 489-526.	0.9	72
179	New Chiral Molybdenum Catalysts for Asymmetric Olefin Metathesis that Contain 3,3â€ ⁻ -Disubstituted Octahydrobinaphtholate or 2,6-Dichlorophenylimido Ligands. Organometallics, 2002, 21, 409-417.	1.1	71
180	The Significance of Degenerate Processes to Enantioselective Olefin Metathesis Reactions Promoted by Stereogenic-at-Mo Complexes. Journal of the American Chemical Society, 2009, 131, 16407-16409.	6.6	68

#	Article	IF	CITATIONS
181	Catalytic <i>Z</i> -Selective Cross-Metathesis in Complex Molecule Synthesis: A Convergent Stereoselective Route to Disorazole C ₁ . Journal of the American Chemical Society, 2014, 136, 16136-16139.	6.6	68
182	Reactivity and Selectivity Differences between Catecholate and Catechothiolate Ru Complexes. Implications Regarding Design of Stereoselective Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2014, 136, 14337-14340.	6.6	68
183	Enantio-, Diastereo-, and Regioselective Zirconium-Catalyzed Carbomagnesation of Cyclic Ethers with Higher Alkyls of Magnesium. Utility in Synthesis and Mechanistic Implications. Journal of the American Chemical Society, 1995, 117, 7097-7104.	6.6	67
184	Practical, Broadly Applicable, α-Selective, <i>Z</i> -Selective, Diastereoselective, and Enantioselective Addition of Allylboron Compounds to Mono-, Di-, Tri-, and Polyfluoroalkyl Ketones. Journal of the American Chemical Society, 2017, 139, 9053-9065.	6.6	67
185	In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds. Journal of the American Chemical Society, 2017, 139, 10919-10928.	6.6	66
186	Cross-metathesis reaction. Generation of highly functionalized olefins from unsaturated alcohols. Journal of Organometallic Chemistry, 2001, 624, 327-332.	0.8	64
187	Synthesis and Evaluation of Molybdenum and Tungsten Monoaryloxide Halide Alkylidene Complexes for <i>Z</i> -Selective Cross-Metathesis of Cyclooctene and <i>Z</i> -1,2-Dichloroethylene. Journal of the American Chemical Society, 2016, 138, 15774-15783.	6.6	64
188	Lewis Acid Catalyzed Borotropic Shifts in the Design of Diastereo―and Enantioselective γâ€Additions of Allylboron Moieties to Aldimines. Angewandte Chemie - International Edition, 2016, 55, 4701-4706.	7.2	64
189	Catalystâ€Controlled Stereoselective Olefin Metathesis as a Principal Strategy in Multistep Synthesis Design: A Concise Route to (+)â€Neopeltolide. Angewandte Chemie - International Edition, 2015, 54, 215-220.	7.2	63
190	E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis. Nature Chemistry, 2019, 11, 478-487.	6.6	63
191	Catalytic Enantioselective Synthesis of Quaternary All-Carbon Stereogenic Centers. Preparation of α,α†-Disubstituted β,γ-Unsaturated Esters through Cu-Catalyzed Asymmetric Allylic Alkylations. Organic Letters, 2005, 7, 1255-1258.	2.4	62
192	Preparation of Macrocyclic <i>Z</i> -Enoates and (<i>E</i> , <i>Z</i>)- or (<i>Z</i> , <i>E</i>)-Dienoates through Catalytic Stereoselective Ring-Closing Metathesis. Journal of the American Chemical Society, 2014, 136, 16493-16496.	6.6	62
193	Stereoselective zirconium-catalyzed ethylmagnesiation of homoallylic alcohols and ethers. The influence of internal Lewis bases on substrate reactivity. Journal of the American Chemical Society, 1991, 113, 8950-8952.	6.6	61
194	Evaluation of Enantiomerically Pure Binaphthol-Based Molybdenum Catalysts for Asymmetric Olefin Metathesis Reactions that Contain 3,3â€ ⁻ -Diphenyl- or 3,3â€ ⁻ -Dimesityl-Substituted Binaphtholate Ligands. Generation and Decomposition of Unsubstituted Molybdacyclobutane Complexes. Organometallics, 2001, 20, 5658-5669.	1.1	61
195	Enantioselective Synthesis of Cyclic Enol Ethers and All-Carbon Quaternary Stereogenic Centers Through Catalytic Asymmetric Ring-Closing Metathesis. Journal of the American Chemical Society, 2006, 128, 5153-5157.	6.6	61
196	Investigations of Reactions between Chiral Molybdenum Imido Alkylidene Complexes and Ethylene:Â Observation of Unsolvated Base-Free Methylene Complexes, Metalacyclobutane and Metalacyclopentane Complexes, and Molybdenum(IV) Olefin Complexes. Organometallics, 2004, 23, 1997-2007.	1.1	60
197	Cu-Catalyzed Asymmetric Conjugate Additions of Dialkyl- and Diarylzinc Reagents to Acyclic β-Silyl-α,β-unsaturated Ketones. Synthesis of Allylsilanes in High Diastereo- and Enantiomeric Purity. Organic Letters, 2007, 9, 3187-3190.	2.4	60
198	A Robust, Efficient, and Highly Enantioselective Method for Synthesis of Homopropargyl Amines. Angewandte Chemie - International Edition, 2012, 51, 6618-6621.	7.2	60

#	Article	IF	CITATIONS
199	Catalytic Enantioselective Synthesis of Allylic Boronates Bearing a Trisubstituted Alkenyl Fluoride and Related Derivatives. Angewandte Chemie - International Edition, 2019, 58, 11998-12003.	7.2	58
200	Inversion of Configuration at the Metal in Diastereomeric Imido Alkylidene Monoaryloxide Monopyrrolide Complexes of Molybdenum. Journal of the American Chemical Society, 2009, 131, 58-59.	6.6	57
201	Regiodivergent Reactions through Catalytic Enantioselective Silylation of Chiral Diols. Synthesis of Sapinofuranone A. Organic Letters, 2011, 13, 3778-3781.	2.4	57
202	An Efficient, Practical, and Enantioselective Method for Synthesis of Homoallenylamides Catalyzed by an Aminoalcohol-Derived, Boron-Based Catalyst. Journal of the American Chemical Society, 2014, 136, 3780-3783.	6.6	57
203	A Multicomponent Niâ€; Zrâ€; and Cuâ€Catalyzed Strategy for Enantioselective Synthesis of Alkenyl‣ubstituted Quaternary Carbons. Angewandte Chemie - International Edition, 2014, 53, 1910-1914.	7.2	56
204	Enantioselective Synthesis of Quaternary Carbon Stereogenic Centers through Copperâ€Catalyzed Conjugate Additions of Aryl―and Alkylaluminum Reagents to Acyclic Trisubstituted Enones. Angewandte Chemie - International Edition, 2013, 52, 8156-8159.	7.2	55
205	Catalytic <i>Z</i> â€Selective Crossâ€Metathesis with Secondary Silyl―and Benzylâ€Protected Allylic Ethers: Mechanistic Aspects and Applications to Natural Product Synthesis. Angewandte Chemie - International Edition, 2013, 52, 8395-8400.	7.2	54
206	Practical and Broadly Applicable Catalytic Enantioselective Additions of Allylâ€8(pin) Compounds to Ketones and αâ€Ketoesters. Angewandte Chemie - International Edition, 2016, 55, 9610-9614.	7.2	54
207	NHC–Cu-Catalyzed Addition of Propargylboron Reagents to Phosphinoylimines. Enantioselective Synthesis of Trimethylsilyl-Substituted Homoallenylamides and Application to the Synthesis of S-(â°)-Cyclooroidin. Journal of the American Chemical Society, 2014, 136, 3362-3365.	6.6	52
208	Synthesis of (±)â€Tetrapetaloneâ€Aâ€Me Aglycon. Angewandte Chemie - International Edition, 2014, 53, 9334-9338.	7.2	50
209	Racemic Vinylallenes in Catalytic Enantioselective Multicomponent Processes: Rapid Generation of Complexity through 1,6â€Conjugate Additions. Angewandte Chemie - International Edition, 2019, 58, 2685-2691.	7.2	50
210	Enantioselective synthesis of cyclic allylboronates by Mo-catalyzed asymmetric ring-closing metathesis (ARCM). A one-pot protocol for net catalytic enantioselective cross metathesis. Tetrahedron, 2004, 60, 7345-7351.	1.0	47
211	The Influence of Anionic Ligands on Stereoisomerism of Ru Carbenes and Their Importance to Efficiency and Selectivity of Catalytic Olefin Metathesis Reactions. Journal of the American Chemical Society, 2014, 136, 3439-3455.	6.6	44
212	Impact of Ethylene on Efficiency and Stereocontrol in Olefin Metathesis: When to Add It, When to Remove It, and When to Avoid It. Angewandte Chemie - International Edition, 2020, 59, 22324-22348.	7.2	44
213	Sulfonate Nâ€Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of Câ"C, Câ"B, Câ"H, and Câ"Si Bonds. Angewandte Chemie - International Edition, 2020, 59, 21304-21359.	7.2	44
214	<i>Endo</i> -Selective Enyne Ring-Closing Metathesis Promoted by Stereogenic-at-W Mono-Pyrrolide Complexes. Organic Letters, 2011, 13, 784-787.	2.4	42
215	Synthesis, Isolation, Characterization, and Reactivity of High-Energy Stereogenic-at-Ru Carbenes: Stereochemical Inversion through Olefin Metathesis and Other Pathways. Journal of the American Chemical Society, 2012, 134, 12438-12441.	6.6	42
216	Syntheses of Molybdenum Oxo Alkylidene Complexes through Addition of Water to an Alkylidyne Complex. Journal of the American Chemical Society, 2018, 140, 2797-2800.	6.6	40

#	Article	IF	CITATIONS
217	Zirconium-Catalyzed Kinetic Resolution of Cyclic Allylic Ethers. An Enantioselective Route to Unsaturated Medium Ring Systems. Journal of the American Chemical Society, 1996, 118, 3779-3780.	6.6	39
218	Ru-Based Catechothiolate Complexes Bearing an Unsaturated NHC Ligand: Effective Cross-Metathesis Catalysts for Synthesis of (<i>Z</i>)-α,β-Unsaturated Esters, Carboxylic Acids, and Primary, Secondary, and Weinreb Amides. Journal of the American Chemical Society, 2019, 141, 7137-7146.	6.6	39
219	Catalytic S _N 2′―and Enantioselective Allylic Substitution with a Diborylmethane Reagent and Application in Synthesis. Angewandte Chemie, 2016, 128, 3516-3519.	1.6	38
220	Zr-Catalyzed Kinetic Resolution of Aliphatic Cyclic Allylic Ethers. Carbocycles to Heterocycles by Ru- and Mo-Catalyzed Ring-Opening and Ring-Closing Metathesis. Journal of Organic Chemistry, 1999, 64, 9690-9696.	1.7	37
221	Pentacoordinate Ruthenium(II) Catecholthiolate and Mercaptophenolate Catalysts for Olefin Metathesis: Anionic Ligand Exchange and Ease of Initiation. Organometallics, 2016, 35, 3878-3892.	1.1	37
222	Catalytic Enantioselective Conjugate Additions of (pin)B‣ubstituted Allylcopper Compounds Generated in situ from Butadiene or Isoprene. Angewandte Chemie, 2016, 128, 10151-10156.	1.6	37
223	High Oxidation State Molybdenum Imido Heteroatom-Substituted Alkylidene Complexes. Organometallics, 2013, 32, 4612-4617.	1.1	36
224	Controllable ROMP Tacticity by Harnessing the Fluxionality of Stereogenicâ€atâ€Ruthenium Complexes. Angewandte Chemie - International Edition, 2016, 55, 4997-5002.	7.2	35
225	S _N 2″-Selective and Enantioselective Substitution with Unsaturated Organoboron Compounds and Catalyzed by a Sulfonate-Containing NHC-Cu Complex. Journal of the American Chemical Society, 2018, 140, 16842-16854.	6.6	34
226	Synthesis of <i>Z</i> - or <i>E</i> -Trisubstituted Allylic Alcohols and Ethers by Kinetically Controlled Cross-Metathesis with a Ru Catechothiolate Complex. Journal of the American Chemical Society, 2017, 139, 15640-15643.	6.6	33
227	Enantioselective Total Synthesis of (â^')â€Deoxoapodine. Angewandte Chemie - International Edition, 2017, 56, 13857-13860.	7.2	33
228	Traceless Protection for More Broadly Applicable Olefin Metathesis. Angewandte Chemie - International Edition, 2019, 58, 5365-5370.	7.2	33
229	Electronically Activated Organoboron Catalysts for Enantioselective Propargyl Addition to Trifluoromethyl Ketones. Angewandte Chemie - International Edition, 2017, 56, 8736-8741.	7.2	32
230	Synthesis of Molybdenum Imido Alkylidene Complexes Containing N,Nâ€~-Disubstituted 2,2â€~-Bisamido-1,1â€~-binaphthyl Ligands. Organometallics, 2000, 19, 925-930.	1.1	31
231	Zr-Catalyzed Olefin Alkylations and Allylic Substitution Reactions with Electrophiles. Journal of the American Chemical Society, 2000, 122, 5977-5983.	6.6	30
232	Catalytic Homologation of Vinyltributylstannane to Allyltributylstannane by Mo(IV) Complexes in the Presence of Ethylene. Journal of the American Chemical Society, 2004, 126, 1948-1949.	6.6	30
233	Streamlined Catalytic Enantioselective Synthesis of α-Substituted β,γ-Unsaturated Ketones and Either of the Corresponding Tertiary Homoallylic Alcohol Diastereomers. Journal of the American Chemical Society, 2020, 142, 18200-18212.	6.6	30
234	Synthesis of Alternating <i>trans</i> -AB Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Alkylidenes. Journal of the American Chemical Society, 2015, 137, 2239-2242.	6.6	29

#	Article	IF	CITATIONS
235	Synthesis of Linear (<i>Z</i>)″±,βâ€Unsaturated Esters by Catalytic Crossâ€Metathesis. The Influence of Acetonitrile. Angewandte Chemie - International Edition, 2016, 55, 13210-13214.	7.2	29
236	Copper–Hydride-Catalyzed Enantioselective Processes with Allenyl Boronates. Mechanistic Nuances, Scope, and Utility in Target-Oriented Synthesis. Journal of the American Chemical Society, 2019, 141, 12087-12099.	6.6	29
237	Zr-Catalyzed Electrophilic Carbomagnesation of Aryl Olefins. Mechanism-Based Control of Zrâ^'Mg Ligand Exchange. Organic Letters, 2001, 3, 2097-2100.	2.4	28
238	Olefins Turned Alkylating Agents:  Diastereoselective Intramolecular Zr-Catalyzed Olefin Alkylations. Organic Letters, 2002, 4, 395-398.	2.4	28
239	Catalytic Enantioselective Addition of an Allyl Group to Ketones Containing a Tri-, a Di-, or a Monohalomethyl Moiety. Stereochemical Control Based on Distinctive Electronic and Steric Attributes of C–Cl, C–Br, and C–F Bonds. Journal of the American Chemical Society, 2019, 141, 16125-16138.	6.6	28
240	Operationally Simple, Efficient, and Diastereoselective Synthesis ofcis-2,6-Disubstituted-4-Methylene Tetrahydropyrans Catalyzed by Triflic Acid. Organic Letters, 2006, 8, 1871-1874.	2.4	26
241	Regio―and Enantioselective Synthesis of Trifluoromethyl‣ubstituted Homoallylic αâ€Tertiary NH ₂ â€Amines by Reactions Facilitated by a Threonineâ€Based Boronâ€Containing Catalyst. Angewandte Chemie - International Edition, 2020, 59, 11448-11455.	7.2	26
242	Bipyridine Adducts of Molybdenum Imido Alkylidene and Imido Alkylidyne Complexes. Organometallics, 2012, 31, 4558-4564.	1.1	25
243	Synthesis of Molybdenum and Tungsten Alkylidene Complexes That Contain Sterically Demanding Arenethiolate Ligands. Organometallics, 2014, 33, 5334-5341.	1.1	25
244	Lewis Acid Catalyzed Borotropic Shifts in the Design of Diastereo―and Enantioselective γâ€Additions of Allylboron Moieties to Aldimines. Angewandte Chemie, 2016, 128, 4779-4784.	1.6	25
245	Practical, efficient, and broadly applicable synthesis of readily differentiable vicinal diboronate compounds by catalytic three-component reactions. Tetrahedron, 2017, 73, 5011-5017.	1.0	25
246	Title is missing!. Angewandte Chemie, 2003, 115, 1314-1317.	1.6	24
247	Syntheses of Molybdenum Oxo Benzylidene Complexes. Journal of the American Chemical Society, 2018, 140, 13609-13613.	6.6	24
248	Molybdenum Imido Alkylidene Complexes Containing Biphen Ligands that Have Silyl Groups Attached through the 6 and 6†Methyl Group Carbon Atoms. Organometallics, 2001, 20, 4705-4712.	1.1	22
249	Diphenylamido Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts. Organometallics, 2006, 25, 4621-4626.	1.1	22
250	Regarding a Persisting Puzzle in Olefin Metathesis with Ru Complexes: Why are Transformations of Alkenes with a Small Substituent <i>Z</i> -Selective?. Organometallics, 2016, 35, 543-562.	1.1	22
251	Versatile Homoallylic Boronates by Chemoâ€, S N 2′â€, Diastereo―and Enantioselective Catalytic Sequence of Cuâ^'H Addition to Vinylâ€B(pin)/Allylic Substitution. Angewandte Chemie, 2017, 129, 839-844.	1.6	22
252	Synthesis of Molybdenum and Tungsten Alkylidene Complexes That Contain the 2,6-Bis(2,4,6-triisopropylphenyl)phenylimido (NHIPT) Ligand. Organometallics, 2015, 34, 2110-2113.	1.1	21

#	Article	IF	CITATIONS
253	A Catalytic Approach for Enantioselective Synthesis of Homoallylic Alcohols Bearing a <i>Z</i> -Alkenyl Chloride or Trifluoromethyl Group. A Concise and Protecting Group-Free Synthesis of Mycothiazole. Journal of the American Chemical Society, 2020, 142, 436-447.	6.6	21
254	N-Substituted tertiary and O-substituted quaternary carbon stereogenic centers by site-, diastereo- and enantioselective vinylogous Mannich reactions. Tetrahedron Letters, 2015, 56, 3489-3493.	0.7	20
255	γâ€; Diastereoâ€; and Enantioselective Addition of MEMOâ€Substituted Allylboron Compounds to Aldimines Catalyzed by Organoboron–Ammonium Complexes. Angewandte Chemie - International Edition, 2018, 57, 11654-11661.	7.2	20
256	Syntheses of Molybdenum Adamantylimido and <i>t</i> Butylimido Alkylidene Chloride Complexes Using HCl and Diphenylmethylphosphine. Organometallics, 2017, 36, 4208-4214.	1.1	19
257	Catalytic Enantioselective Synthesis of Allylic Boronates Bearing a Trisubstituted Alkenyl Fluoride and Related Derivatives. Angewandte Chemie, 2019, 131, 12126-12131.	1.6	19
258	Silica‣upported Molybdenum Oxo Alkylidenes: Bridging the Gap between Internal and Terminal Olefin Metathesis. Angewandte Chemie - International Edition, 2019, 58, 11816-11819.	7.2	19
259	Stereodefined alkenes with a fluoro-chloro terminus as a uniquely enabling compound class. Nature Chemistry, 2022, 14, 463-473.	6.6	19
260	Diversity-Based Identification of Efficient Homochiral Organometallic Catalysts for Enantioselective Synthesis. , 2004, , 991-1016.		18
261	Combinatorial catalysis: identification of potent chiral catalysts through fluorescent bead signaling. Chemistry and Biology, 1999, 6, R305-R308.	6.2	17
262	Stereoselective Chelate-Controlled Addition of Grignard Reagents to Unsaturated Medium-Ring Heterocycles. Journal of Organic Chemistry, 1999, 64, 854-860.	1.7	17
263	New Enantiomerically Pure Alkylimido Molybdenum-Based Alkylidene Complexes. Synthesis, Characterization, and Activity as Chiral Olefin Metathesis Catalysts. Organometallics, 2007, 26, 831-837.	1.1	16
264	Practical and Broadly Applicable Catalytic Enantioselective Additions of Allylâ€B(pin) Compounds to Ketones and αâ€Ketoesters. Angewandte Chemie, 2016, 128, 9762-9766.	1.6	16
265	Synthesis of 2,6-Hexa- <i>tert</i> -butylterphenyl Derivatives, 2,6-(2,4,6- <i>t</i> -Bu ₃ C ₆ H ₂) ₂ C ₆ H _{3where X = I, Li, OH, SH, N₃, or NH₂. Organic Letters, 2017, 19, 2607-2609.}	×2X4	16
266	Racemic Vinylallenes in Catalytic Enantioselective Multicomponent Processes: Rapid Generation of Complexity through 1,6â€Conjugate Additions. Angewandte Chemie, 2019, 131, 2711-2717.	1.6	15
267	Syntheses of "Phosphine-Free―Molybdenum Oxo Alkylidene Complexes through Addition of Water to Alkylidyne Complexes. Organometallics, 2020, 39, 2486-2492.	1.1	15
268	Synthesis of Tungsten Imido Alkylidene Complexes that Contain an Electron-Withdrawing Imido Ligand. Organometallics, 2014, 33, 5342-5348.	1.1	13
269	Electronically Activated Organoboron Catalysts for Enantioselective Propargyl Addition to Trifluoromethyl Ketones. Angewandte Chemie, 2017, 129, 8862-8867.	1.6	13
270	Impact of Ethylene on Efficiency and Stereocontrol in Olefin Metathesis: When to Add It, When to Remove It, and When to Avoid It. Angewandte Chemie, 2020, 132, 22508-22532.	1.6	13

#	Article	IF	CITATIONS
271	Sulfonate Nâ€Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of Câ^'C, Câ^'B, Câ^'H, and Câ^'Si Bonds. Angewandte Chemie, 2020, 132, 21488-21543.	1.6	13
272	Chiral Zirconium Catalysts for Enantioselective Synthesis. , 0, , 180-229.		12
273	Synthesis of Linear (<i>Z</i>)â€Î±,βâ€Unsaturated Esters by Catalytic Crossâ€Metathesis. The Influence of Acetonitrile. Angewandte Chemie, 2016, 128, 13404-13408.	1.6	9
274	Synthesis of High-Oxidation-State Moâ•CHX Complexes, Where X = Cl, CF ₃ , Phosphonium, CN. Organometallics, 2018, 37, 1641-1644.	1.1	9
275	Traceless Protection for More Broadly Applicable Olefin Metathesis. Angewandte Chemie, 2019, 131, 5419-5424.	1.6	9
276	Boosting the Metathesis Activity of Molybdenum Oxo Alkylidenes by Tuning the Anionic Ligand $\ddot{I}f$ Donation. Inorganic Chemistry, 2021, 60, 6875-6880.	1.9	9
277	Regio―and Enantioselective Synthesis of Trifluoromethyl‣ubstituted Homoallylic αâ€Tertiary NH 2 â€Amines by Reactions Facilitated by a Threonineâ€Based Boronâ€Containing Catalyst. Angewandte Chemie, 2020, 132, 11545-11552.	1.6	8
278	Oxo 2-Adamantylidene Complexes of Mo(VI) and W(VI). Organometallics, 2021, 40, 838-842.	1.1	8
279	Cover Picture: Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts (Angew. Chem. Int. Ed. 38/2003). Angewandte Chemie - International Edition, 2003, 42, 4555-4555.	7.2	7
280	Enantioselective Total Synthesis of (â^)â€Đeoxoapodine. Angewandte Chemie, 2017, 129, 14045-14048.	1.6	7
281	Cross-metathesis of Allenes. Mechanistic Analysis and Identification of a Ru-CAAC as the Most Effective Catalyst. Journal of the American Chemical Society, 2021, 143, 20640-20644.	6.6	7
282	Controllable ROMP Tacticity by Harnessing the Fluxionality of Stereogenicâ€atâ€Ruthenium Complexes. Angewandte Chemie, 2016, 128, 5081-5086.	1.6	6
283	γâ€, Diastereoâ€, and Enantioselective Addition of MEMOâ€Substituted Allylboron Compounds to Aldimines Catalyzed by Organoboron–Ammonium Complexes. Angewandte Chemie, 2018, 130, 11828-11835.	1.6	6
284	Catalytic Enantioselective Conjugate Addition of Stereodefined Di―and Trisubstituted Alkenylaluminum Compounds to Acyclic Enones. Advanced Synthesis and Catalysis, 2020, 362, 370-375.	2.1	6
285	E- and Z-trisubstituted macrocyclic alkenes for natural product synthesis and skeletal editing. Nature Chemistry, 2022, 14, 640-649.	6.6	6
286	Zr-catalyzed diastereo- and enantioselective diene cyclizations. An unexpected synthesis of chiral aldehydes. Inorganica Chimica Acta, 2003, 345, 261-267.	1.2	5
287	Polymer-supported Olefin Metathesis Catalysts for Organic and Combinatorial Synthesis. , 2005, , 467-502.		5
			_

Asymmetric Catalysis in Target-Oriented Synthesis. , 2005, , 145-160.

3

#	Article	IF	CITATIONS
289	Silicaâ€5upported Molybdenum Oxo Alkylidenes: Bridging the Gap between Internal and Terminal Olefin Metathesis. Angewandte Chemie, 2019, 131, 11942-11945.	1.6	3
290	Primo Levi'sThe Periodic Table. A Search for Patterns in Times Past. Angewandte Chemie - International Edition, 2004, 43, 6592-6594.	7.2	1
291	Frontispiece: Catalytic Enantioselective Synthesis of Allylic Boronates Bearing a Trisubstituted Alkenyl Fluoride and Related Derivatives. Angewandte Chemie - International Edition, 2019, 58, .	7.2	1
292	Room for one more on board?. Nature, 2001, 413, 676-676.	13.7	0
293	Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts ChemInform, 2003, 34, no.	0.1	0
294	Three-Component Enantioselective Synthesis of Propargylamines Through Zr-Catalyzed Additions of Alkyl Zinc Reagents to Alkynylimines ChemInform, 2003, 34, no.	0.1	0
295	Enantioselective Synthesis of Cyclic Allylboronates by Mo-Catalyzed Asymmetric Ring-Closing Metathesis (ARCM). A One-Pot Protocol for Net Catalytic Enantioselective Cross Metathesis ChemInform, 2004, 35, no.	0.1	0
296	Highly Enantioselective Cu-Catalyzed Conjugate Additions of Dialkylzinc Reagents to Unsaturated Furanones and Pyranones: Preparation of Air-Stable and Catalytically Active Cu-Peptide Complexes ChemInform, 2005, 36, no.	0.1	0
297	Frontispiz: Catalytic Enantioselective Synthesis of Allylic Boronates Bearing a Trisubstituted Alkenyl Fluoride and Related Derivatives. Angewandte Chemie, 2019, 131, .	1.6	0