
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3099119/publications.pdf Version: 2024-02-01

LUCA RONFANTI

#	Article	IF	CITATIONS
1	Neuronal and Brain Maturation. International Journal of Molecular Sciences, 2022, 23, 4400.	4.1	1
2	Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nature Communications, 2022, 13, 2331.	12.8	5
3	How Widespread Are the "Young―Neurons of the Mammalian Brain?. Frontiers in Neuroscience, 2022, 16, .	2.8	7
4	Searching for alternatives to brain regeneration. Neural Regeneration Research, 2021, 16, 2198.	3.0	7
5	Public Engagement and Neurology: An Update. Brain Sciences, 2021, 11, 429.	2.3	5
6	Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. International Journal of Molecular Sciences, 2021, 22, 9358.	4.1	23
7	The PSA-NCAM-Positive "Immature―Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity. Cells, 2021, 10, 2542.	4.1	22
8	Brain Structural Plasticity: From Adult Neurogenesis to Immature Neurons. Frontiers in Neuroscience, 2020, 14, 75.	2.8	53
9	Brain Waste: The Neglect of Animal Brains. Frontiers in Neuroanatomy, 2020, 14, 573934.	1.7	5
10	Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. ELife, 2020, 9, .	6.0	37
11	Newly Generated and Non-Newly Generated "Immature―Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease?. Journal of Clinical Medicine, 2019, 8, 685.	2.4	35
12	Laminar Organization and Projections of the Motor Cortex of the Sheep. FASEB Journal, 2019, 33, 768.5.	0.5	0
13	Non-Newly Generated, "Immature―Neurons in the Sheep Brain Are Not Restricted to Cerebral Cortex. Journal of Neuroscience, 2018, 38, 826-842.	3.6	60
14	Brain Plasticity in Mammals: An Example for the Role of Comparative Medicine in the Neurosciences. Frontiers in Veterinary Science, 2018, 5, 274.	2.2	12
15	Editorial: Adult Neurogenesis: Beyond Rats and Mice. Frontiers in Neuroscience, 2018, 12, 904.	2.8	8
16	Humans and Dolphins: Decline and Fall of Adult Neurogenesis. Frontiers in Neuroscience, 2018, 12, 497.	2.8	30
17	Clusters of DCX+ cells "trapped―in the subcortical white matter of early postnatal Cetartiodactyla (Tursiops truncatus, Stenella coeruloalba and Ovis aries). Brain Structure and Function, 2018, 223, 3613-3632.	2.3	11
18	Do large brains of long-living mammals prefer non-newly generated, immature neurons?. Neural Regeneration Research, 2018, 13, 633.	3.0	21

#	Article	IF	CITATIONS
19	Non-neurogenic SVZ-like niche in dolphins, mammals devoid of olfaction. Brain Structure and Function, 2017, 222, 2625-2639.	2.3	19
20	Adult Neurogenesis 50 Years Later: Limits and Opportunities in Mammals. Frontiers in Neuroscience, 2016, 10, 44.	2.8	26
21	Adult Neurogenesis in Mammals: Variations and Confusions. Brain, Behavior and Evolution, 2016, 87, 205-221.	1.7	43
22	Heterogeneous Oil Transesterification in a Singleâ€Phase Liquid Mixture using a Coâ€Solvent for Improved Biofuels Production. Energy Technology, 2015, 3, 1170-1173.	3.8	8
23	New neurons from old beliefs in the adult piriform cortex? A Commentary on: ââ,¬Å"Occurrence of new neurons in the piriform cortexââ,¬Â• Frontiers in Neuroanatomy, 2015, 9, 62.	1.7	13
24	Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba). Frontiers in Neuroanatomy, 2015, 9, 140.	1.7	14
25	Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches. Frontiers in Cellular Neuroscience, 2015, 9, 455.	3.7	15
26	Adult neurogenesis 20 years later: physiological function vs. brain repair. Frontiers in Neuroscience, 2015, 9, 71.	2.8	9
27	Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harbor Perspectives in Biology, 2015, 7, a018846.	5.5	96
28	Therapeutic potential of neural stem cells: greater in people's perception than in their brains?. Frontiers in Neuroscience, 2014, 8, 79.	2.8	14
29	Quiescent neuronal progenitors are activated in the juvenile guinea pig lateral striatum and give rise to transient neurons. Development (Cambridge), 2014, 141, 4065-4075.	2.5	30
30	Major unsolved points in adult neurogenesis: doors open on a translational future?. Frontiers in Neuroscience, 2014, 8, 154.	2.8	16
31	Using balance training to improve the performance of youth basketball players. Sport Sciences for Health, 2013, 9, 37-42.	1.3	45
32	Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1045-54.	7.1	212
33	A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death and Differentiation, 2013, 20, 1455-1464.	11.2	68
34	Cellular and Molecular Characterization of Multipolar Map5-Expressing Cells: A Subset of Newly Generated, Stage-Specific Parenchymal Cells in the Mammalian Central Nervous System. PLoS ONE, 2013, 8, e63258.	2.5	11
35	The (Real) Neurogenic/Cliogenic Potential of the Postnatal and Adult Brain Parenchyma. ISRN Neuroscience, 2013, 2013, 1-14.	1.5	15
36	Parenchymal Neuro-Glio-Genesis Versus Germinal Layer- Derived Neurogenesis: Two Faces of Central Nervous System Structural Plasticity. , 2013, , .		0

#	Article	IF	CITATIONS
37	The galactocerebrosidase enzyme contributes to maintain a functional neurogenic niche during early post-natal CNS development. Human Molecular Genetics, 2012, 21, 4732-4750.	2.9	33
38	New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: The case of cortical layer II immature neurons. Progress in Neurobiology, 2012, 98, 1-15.	5.7	78
39	Neurogenesis Outside the Central Nervous System (An Overview). , 2012, , 271-280.		0
40	The Missing Chain. Frontiers in Neuroscience, 2012, 6, 5.	2.8	2
41	From Hydra Regeneration to Human Brain Structural Plasticity: A Long Trip through Narrowing Roads. Scientific World Journal, The, 2011, 11, 1270-1299.	2.1	46
42	Towards a comparative understanding of adult neurogenesis. European Journal of Neuroscience, 2011, 34, 845-846.	2.6	15
43	Adult neurogenesis in mammals – a theme with many variations. European Journal of Neuroscience, 2011, 34, 930-950.	2.6	166
44	Culturing conditions remarkably affect viability and organization of mouse subventricular zone in ex vivo cultured forebrain slices. Journal of Neuroscience Methods, 2011, 197, 65-81.	2.5	3
45	Brain Regeneration in Physiology and Pathology: The Immune Signature Driving Therapeutic Plasticity of Neural Stem Cells. Physiological Reviews, 2011, 91, 1281-1304.	28.8	199
46	Neurogenesis in the Adult Rabbit: From Olfactory System to Cerebellum. , 2011, , 319-336.		0
47	Neural-specific inactivation of ShcA functions results in anatomical disorganization of subventricular zone neural stem cell niche in the adult brain. Neuroscience, 2010, 168, 314-322.	2.3	9
48	Polysialic acid and activity-dependent synapse remodeling. Cell Adhesion and Migration, 2009, 3, 43-50.	2.7	54
49	Effects of developmental age, brain region, and time in culture on longâ€ŧerm proliferation and multipotency of neural stem cell populations. Journal of Comparative Neurology, 2009, 517, 333-349.	1.6	35
50	DCX and PSA-NCAM Expression Identifies a Population of Neurons Preferentially Distributed in Associative Areas of Different Pallial Derivatives and Vertebrate Species. Cerebral Cortex, 2009, 19, 1028-1041.	2.9	107
51	Immuno-electromicroscopic approach for the study of neural stem cell niches. Veterinary Research Communications, 2008, 32, 107-109.	1.6	3
52	Adult mammalian neurogenesis and the New Zealand white rabbit. Veterinary Journal, 2008, 175, 310-331.	1.7	44
53	Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits. PLoS ONE, 2008, 3, e2366.	2.5	108
54	Neuronal–glial interactions in central nervous system neurogenesis: the neural stem cell perspective. Neuron Glia Biology, 2007, 3, 309-323.	1.6	16

#	Article	IF	CITATIONS
55	Radial glial origin of the adult neural stem cells in the subventricular zone. Progress in Neurobiology, 2007, 83, 24-36.	5.7	100
56	A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Developmental Biology, 2006, 294, 168-180.	2.0	59
57	PSA-NCAM in mammalian structural plasticity and neurogenesis. Progress in Neurobiology, 2006, 80, 129-164.	5.7	396
58	The Rabbit Subventricular Zone (SVZ): An Ultrastructural and Immunocytochemical Study. Veterinary Research Communications, 2006, 30, 163-165.	1.6	1
59	Cellular composition and cytoarchitecture of the rabbit subventricular zone and its extensions in the forebrain. Journal of Comparative Neurology, 2006, 498, 491-507.	1.6	59
60	Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. Journal of Comparative Neurology, 2005, 487, 407-427.	1.6	154
61	Tangential Chains of Neuroblasts in the Subpial Layer of the Adult Rabbit Cerebellum. Veterinary Research Communications, 2005, 29, 161-163.	1.6	1
62	Comparative expression profiles of ShcB and ShcC phosphotyrosine adapter molecules in the adult brain. Neuroscience, 2005, 133, 105-115.	2.3	23
63	Neural Stem Cells. Circulation Research, 2003, 92, 598-608.	4.5	232
64	Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13036-13041.	7.1	93
65	Cell Migration in the Rostral Migratory Stream. Chemical Senses, 2002, 27, 581-582.	2.0	16
66	Adult structural plasticity and neurogenesis in the mammalian olfactory system. Rendiconti Lincei, 2002, 13, 145-179.	2.2	1
67	Multipotent Neural Stem Cells Reside into the Rostral Extension and Olfactory Bulb of Adult Rodents. Journal of Neuroscience, 2002, 22, 437-445.	3.6	358
68	Shc signaling in differentiating neural progenitor cells. Nature Neuroscience, 2001, 4, 579-586.	14.8	103
69	Aminoacyl-histidine dipeptides in the glial cells of the adult rabbit forebrainâ~†,1. Peptides, 2000, 21, 1717-1724.	2.4	3
70	The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Research Bulletin, 1999, 49, 221-243.	3.0	195
71	Carnosine-like immunoreactivity in astrocytes of the glial tubes and in newly-generated cells within the tangential part of the rostral migratory stream of rodents. Neuroscience, 1998, 85, 527-542.	2.3	14
72	The cytosolic phosphoprotein stathmin is expressed in the olfactory system of the adult rat. NeuroReport, 1997, 8, 2825-2829.	1.2	26

LUCA BONFANTI

#	Article	IF	CITATIONS
73	Newly-generated cells from the rostral migratory stream in the accessory olfactory bulb of the adult rat. Neuroscience, 1997, 81, 489-502.	2.3	79
74	Glial Tubes in the Rostral Migratory Stream of the Adult Rat. Brain Research Bulletin, 1997, 42, 9-21.	3.0	230
75	Dorsal rhizotomy induces transient expression of the highly sialylated isoform of the neural cell adhesion molecule in neurons and astrocytes of the adult rat spinal cord. Neuroscience, 1996, 74, 619-623.	2.3	34
76	The early intracellular signaling pathway for the insulin/insulin-like growth factor receptor family in the mammalian central nervous system. Molecular Neurobiology, 1996, 13, 155-183.	4.0	75
77	Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. Journal of Neuroscience, 1994, 14, 6412-6422.	3.6	133
78	Adhesion molecules and structural plasticity of the adult hypothalamo-neurohypophysial system. Psychoneuroendocrinology, 1994, 19, 455-462.	2.7	43
79	Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience, 1994, 62, 291-305.	2.3	209
80	Radial Glia-Like Cells in the Supraoptic Nucleus of the Adult Rat. Journal of Neuroendocrinology, 1993, 5, 1-5.	2.6	76
81	Putative factors implicated in the structural plasticity of the hypothalamo-neurohypophysial system. Regulatory Peptides, 1993, 45, 165-170.	1.9	9
82	Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: An immunohistochemical study. Neuroscience, 1992, 49, 419-436.	2.3	302
83	Distribution of protein gene product 9.5 (PGP 9.5) in the vertebrate retina: Evidence that immunoreactivity is restricted to mammalian horizontal and ganglion cells. Journal of Comparative Neurology, 1992, 322, 35-44.	1.6	46
84	Distribution of five peptides, three general neuroendocrine markers, and two synaptic-vesicle-associated proteins in the spinal cord and dorsal root ganglia of the adult and	1.0	16

newborn dog: An immunocytochemical study. American Journal of Anatomy, 1991, 191, 154-166.