Kazuhiro Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/309834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	4.0	456
2	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
3	The Japanese space gravitational wave antenna—DECIGO. Classical and Quantum Gravity, 2006, 23, S125-S131.	4.0	388
4	Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy. Physical Review Letters, 2001, 86, 3950-3954.	7.8	255
5	The status of DECIGO. Journal of Physics: Conference Series, 2017, 840, 012010.	0.4	148
6	Search for a Stochastic Background of 100-MHz Gravitational Waves with Laser Interferometers. Physical Review Letters, 2008, 101, 101101.	7.8	77
7	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	2.1	73
8	First search for gravitational waves from inspiraling compact binaries using TAMA300 data. Physical Review D, 2001, 63, .	4.7	70
9	Laser-interferometric detectors for gravitational wave backgrounds at 100ÂMHz: Detector design and sensitivity. Physical Review D, 2008, 77, .	4.7	70
10	Torsion-Bar Antenna for Low-Frequency Gravitational-Wave Observations. Physical Review Letters, 2010, 105, 161101.	7.8	58
11	Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection. Physical Review D, 2006, 74, .	4.7	51
12	Wide-Band Direct Measurement of Thermal Fluctuations in an Interferometer. Physical Review Letters, 2003, 91, 260602.	7.8	49
13	DECIGO and DECIGO pathfinder. Classical and Quantum Gravity, 2010, 27, 084010.	4.0	39
14	Reduction of Thermal Fluctuations in a Cryogenic Laser Interferometric Gravitational Wave Detector. Physical Review Letters, 2012, 108, 141101.	7.8	36
15	Systematic measurement of the intrinsic losses in various kinds of bulk fused silica. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 263-271.	2.1	30
16	DECIGO: The Japanese space gravitational wave antenna. Journal of Physics: Conference Series, 2009, 154, 012040.	0.4	30
17	Absolute-length determination of a long-baseline Fabry–Perot cavity by means of resonating modulation sidebands. Applied Optics, 1999, 38, 2848.	2.1	24
18	Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses. Physical Review D, 2005, 71, .	4.7	24

#	Article	IF	CITATIONS
19	Thermal noise caused by an inhomogeneous loss in the mirrors used in the gravitational wave detector. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 305, 18-25.	2.1	23
20	Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator. Physical Review A, 2010, 81, .	2.5	23
21	Current status of Japanese detectors. Classical and Quantum Gravity, 2007, 24, S399-S403.	4.0	22
22	Experimental study of thermal noise caused by an inhomogeneously distributed loss. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 289-296.	2.1	20
23	Study of the thermal noise caused by inhomogeneously distributed loss. Classical and Quantum Gravity, 2002, 19, 1689-1696.	4.0	20
24	Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope. Classical and Quantum Gravity, 2014, 31, 224003.	4.0	20
25	Development of a multistage laser frequency stabilization for an interferometric gravitational-wave detector. Review of Scientific Instruments, 2003, 74, 4176-4183.	1.3	19
26	Coating thermal noise of a finite-size cylindrical mirror. Physical Review D, 2009, 79, .	4.7	19
27	Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: Toward the KAGRA gravitational wave detector. Physical Review D, 2014, 90, .	4.7	19
28	Vacuum and cryogenic compatible black surface for large optical baffles in advanced gravitational-wave telescopes. Optical Materials Express, 2016, 6, 1613.	3.0	19
29	DECIGO pathfinder. Classical and Quantum Gravity, 2009, 26, 094019.	4.0	18
30	Thermal-noise-limited underground interferometer CLIO. Classical and Quantum Gravity, 2010, 27, 084022.	4.0	17
31	Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data. Physical Review D, 2004, 70, .	4.7	16
32	Conduction Effect of Thermal Radiation in a Metal Shield Pipe in a Cryostat for a Cryogenic Interferometric Gravitational Wave Detector. Japanese Journal of Applied Physics, 2008, 47, 1771-1774.	1.5	16
33	Cryogenic suspension design for a kilometer-scale gravitational-wave detector. Classical and Quantum Gravity, 2021, 38, 085013.	4.0	15
34	Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope. Classical and Quantum Gravity, 2017, 34, 225001.	4.0	14
35	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
36	Prospects for improving the sensitivity of the cryogenic gravitational wave detector KAGRA. Physical Review D, 2020, 102, .	4.7	12

Kazuhiro Yamamoto

#	Article	IF	CITATIONS
37	Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000–2004. Physical Review D, 2006, 74, .	4.7	11
38	Cryogenic systems of the Cryogenic Laser Interferometer Observatory. Journal of Physics: Conference Series, 2006, 32, 259-264.	0.4	11
39	Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors. Physical Review D, 2008, 78, .	4.7	11
40	Development of a light source with an injection-locked Nd:YAG laser and a ring-mode cleaner for the TAMA 300 gravitational-wave detector. Review of Scientific Instruments, 2002, 73, 2136-2142.	1.3	10
41	Direct Measurement of Thermal Fluctuation of High-QPendulum. Physical Review Letters, 2010, 104, 040602.	7.8	10
42	Calculation of thermal radiation input via funneling through a duct shield with baffles for KAGRA. Classical and Quantum Gravity, 2012, 29, 205019.	4.0	10
43	Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA. Review of Scientific Instruments, 2016, 87, 034501.	1.3	10
44	Search for continuous gravitational waves from PSR J0835-4510 using CLIO data. Classical and Quantum Gravity, 2008, 25, 184013.	4.0	8
45	Optimal location of two laser-interferometric detectors for gravitational wave backgrounds at 100 MHz. Classical and Quantum Gravity, 2008, 25, 225011.	4.0	8
46	Theoretical approach to thermal noise caused by an inhomogeneously distributed loss: Physical insight by the advanced modal expansion. Physical Review D, 2007, 75, .	4.7	6
47	Experimental study of the thermal noise of mirrors with an inhomogeneous loss used in gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 321, 79-86.	2.1	5
48	Prospects for improving the sensitivity of KAGRA gravitational wave detector. , 2022, , .		3
49	Cryogenics. , 2012, , 108-128.		1
50	Mechanical loss characterization at cryogenic temperature of a tungsten wire: An automated measurement system. , 2014, , .		1
51	SEISMIC ATTENUATION SYSTEM (SAS) IN THE KAMIOKA MINE. , 2015, , .		1
52	Cryogenic Mirrors.The State-of-the-art in Interferometric Gravitational Wave Detectors. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2011, 46, 426-433.	0.1	1
53	MAKING A DATA ANALYSIS PROCESSOR WITH FPGA FOR GRAVITATIONAL-WAVE EVENT SEARCH. International Journal of Modern Physics A, 2005, 20, 7057-7059.	1.5	0
54	An experiment to distinguish between diffusive and specular surfaces for thermal radiation in cryogenic gravitational-wave detectors. Progress of Theoretical and Experimental Physics, 2015, 2015, 073F01.	6.6	0