Utz Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3097091/publications.pdf

Version: 2024-02-01

106	10.000	23567	24258
136	12,882	58	110
papers	citations	h-index	g-index
138	138	138	10240
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Molecular Cell, 2022, 82, 159-176.e12.	9.7	22
2	A generic protocol for the affinity-purification of native macromolecular complexes from poxvirus-infected cells. STAR Protocols, 2022, 3, 101116.	1.2	1
3	Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature, 2022, 605, 539-544.	27.8	23
4	Cytoplasmic gene expression: lessons from poxviruses. Trends in Biochemical Sciences, 2022, 47, 892-902.	7.5	8
5	Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biology, 2021, 18, 290-303.	3.1	14
6	Interaction of 7SK with the Smn complex modulates snRNP production. Nature Communications, 2021, 12, 1278.	12.8	23
7	Identification and structural analysis of the <i>Schizosaccharomyces pombe</i> SMN complex. Nucleic Acids Research, 2021, 49, 7207-7223.	14.5	6
8	Genotype–phenotype correlations and novel molecular insights into the DHX30-associated neurodevelopmental disorders. Genome Medicine, 2021, 13, 90.	8.2	16
9	Additional causal SNRPE mutations in hereditary hypotrichosis simplex. British Journal of Dermatology, 2021, 185, 439-441.	1.5	3
10	TOR signaling regulates liquid phase separation of the SMN complex governing snRNP biogenesis. Cell Reports, 2021, 35, 109277.	6.4	15
11	The miR-26 family regulates neural differentiation-associated microRNAs and mRNAs by directly targeting REST. Journal of Cell Science, 2021, 134, .	2.0	10
12	A novel zebrafish model for intermediate type spinal muscular atrophy demonstrates importance of Smn for maintenance of mature motor neurons. Human Molecular Genetics, 2021, 30, 2488-2502.	2.9	3
13	Room-Temperature Topological Polariton Laser in an Organic Lattice. Nano Letters, 2021, 21, 6398-6405.	9.1	28
14	Fluorescence Correlation Spectroscopy Reveals Survival Motor Neuron Oligomerization but No Active Transport in Motor Axons of a Zebrafish Model for Spinal Muscular Atrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 639904.	3.7	4
15	Structural basis of the complete poxvirus transcription initiation process. Nature Structural and Molecular Biology, 2021, 28, 779-788.	8.2	12
16	Structure and function of the poxvirus transcription machinery. The Enzymes, 2021, 50, 1-20.	1.7	4
17	Coherence and Interaction in Confined Room-Temperature Polariton Condensates with Frenkel Excitons. ACS Photonics, 2020, 7, 384-392.	6.6	42
18	Room temperature organic exciton–polariton condensate in a lattice. Nature Communications, 2020, 11, 2863.	12.8	56

#	Article	IF	Citations
19	Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1. Biomolecules, 2020, 10, 872.	4.0	7
20	LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Spermatogenesis in Mice. Molecular Cell, 2020, 77, 999-1013.e6.	9.7	41
21	The Alazami Syndrome-Associated Protein LARP7 Guides U6 Small Nuclear RNA Modification and Contributes to Splicing Robustness. Molecular Cell, 2020, 77, 1014-1031.e13.	9.7	45
22	A missense mutation in SNRPE linked to non-syndromal microcephaly interferes with U snRNP assembly and pre-mRNA splicing. PLoS Genetics, 2019, 15, e1008460.	3.5	18
23	Structural Basis of Poxvirus Transcription: Transcribing and Capping Vaccinia Complexes. Cell, 2019, 179, 1525-1536.e12.	28.9	37
24	Structural Basis of Poxvirus Transcription: Vaccinia RNA Polymerase Complexes. Cell, 2019, 179, 1537-1550.e19.	28.9	41
25	Gene Knockdown in Zebrafish (Danio rerio) as a Tool to Model Photoreceptor Diseases. Methods in Molecular Biology, 2019, 1834, 209-219.	0.9	2
26	Impaired Local Translation of \hat{l}^2 -actin mRNA in Ighmbp2-Deficient Motoneurons: Implications for Spinal Muscular Atrophy with respiratory Distress (SMARD1). Neuroscience, 2018, 386, 24-40.	2.3	7
27	Polariton-lasing in microcavities filled with fluorescent proteins. , 2018, , .		2
28	Exciton dynamics in solid-state green fluorescent protein. Applied Physics Letters, 2017, 110, .	3.3	5
29	Molding Photonic Boxes into Fluorescent Emitters by Direct Laser Writing. Advanced Materials, 2017, 29, 1605236.	21.0	9
30	Deciphering the mRNP Code: RNA-Bound Determinants of Post-Transcriptional Gene Regulation. Trends in Biochemical Sciences, 2017, 42, 369-382.	7.5	115
31	UsnRNP biogenesis: mechanisms and regulation. Chromosoma, 2017, 126, 577-593.	2.2	49
32	Impaired spliceosomal UsnRNP assembly leads to Sm mRNA down-regulation and Sm protein degradation. Journal of Cell Biology, 2017, 216, 2391-2407.	5.2	28
33	Strong Coupling in Fully Tunable Microcavities Filled with Biologically Produced Fluorescent Proteins. Advanced Optical Materials, 2017, 5, 1600659.	7.3	21
34	The Ribosome Cooperates with the Assembly Chaperone plCln to Initiate Formation of snRNPs. Cell Reports, 2016, 16, 3103-3112.	6.4	23
35	A critical examination of the recently reported crystal structures of the human SMN protein. Human Molecular Genetics, 2016, 25, ddw298.	2.9	13
36	The right pick: structural basis of snRNA selection by Gemin5. Genes and Development, 2016, 30, 2341-2344.	5.9	11

#	Article	IF	Citations
37	Loss of LARP4B, an early event in the tumorigenesis of brain cancer?. Translational Cancer Research, 2016, 5, S1196-S1199.	1.0	2
38	Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes. EMBO Molecular Medicine, 2015, 7, 1565-1579.	6.9	37
39	Reconstitution of the human U sn <scp>RNP</scp> assembly machinery reveals stepwise Sm protein organization. EMBO Journal, 2015, 34, 1925-1941.	7.8	47
40	Drug-Encoded Biomarkers for Monitoring Biological Therapies. PLoS ONE, 2015, 10, e0137573.	2.5	4
41	The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Molecular Biology of the Cell, 2015, 26, 161-171.	2.1	22
42	LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation. Rna, 2015, 21, 1294-1305.	3.5	41
43	mRNA metabolism and neuronal disease. FEBS Letters, 2015, 589, 1598-1606.	2.8	19
44	The structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic cooperativity. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 687-696.	2.5	6
45	Assembly of RNPs: help needed. Rna, 2015, 21, 613-614.	3.5	3
46	Crystallizing the 6S and 8S spliceosomal assembly intermediates: a complex project. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2040-2053.	2.5	4
47	ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nature Methods, 2015, 12, 859-865.	19.0	87
48	Phosphoregulation of the human SMN complex. European Journal of Cell Biology, 2014, 93, 106-117.	3.6	24
49	<i>SMN</i> deficiency alters <i>Nrxn2</i> expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Human Molecular Genetics, 2014, 23, 1754-1770.	2.9	67
50	Identification of a PRPF4 Loss-of-Function Variant That Abrogates U4/U6.U5 Tri-snRNP Integration and Is Associated with Retinitis Pigmentosa. PLoS ONE, 2014, 9, e111754.	2.5	36
51	Structural Basis of Assembly Chaperone- Mediated snRNP Formation. Molecular Cell, 2013, 49, 692-703.	9.7	82
52	Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nature Neuroscience, 2013, 16, 1228-1237.	14.8	144
53	Mutations in SNRPE, which Encodes a Core Protein of the Spliceosome, Cause Autosomal-Dominant Hypotrichosis Simplex. American Journal of Human Genetics, 2013, 92, 81-87.	6.2	36
54	Intronic miR-26b controls neuronal differentiation by repressing its host transcript, <i>ctdsp2</i> Genes and Development, 2012, 26, 25-30.	5.9	120

#	Article	IF	Citations
55	Binding of the Heterogeneous Ribonucleoprotein K (hnRNP K) to the Epstein-Barr Virus Nuclear Antigen 2 (EBNA2) Enhances Viral LMP2A Expression. PLoS ONE, 2012, 7, e42106.	2.5	19
56	The 1D4 Antibody Labels Outer Segments of Long Double Cone But Not Rod Photoreceptors in Zebrafish. , 2012, 53, 4943.		39
57	Analysis of Photoreceptor Degeneration in the Zebrafish Danio rerio. Methods in Molecular Biology, 2012, 935, 127-137.	0.9	0
58	Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nature Structural and Molecular Biology, 2011, 18, 1414-1420.	8.2	164
59	Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdisciplinary Reviews RNA, 2011, 2, 718-731.	6.4	116
60	Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa. Molecular Neurodegeneration, 2011, 6, 56.	10.8	43
61	RioK1, a New Interactor of Protein Arginine Methyltransferase 5 (PRMT5), Competes with plCln for Binding and Modulates PRMT5 Complex Composition and Substrate Specificity. Journal of Biological Chemistry, 2011, 286, 1976-1986.	3.4	120
62	Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosaâ€. Human Molecular Genetics, 2011, 20, 368-377.	2.9	60
63	Cellular strategies for the assembly of molecular machines. Trends in Biochemical Sciences, 2010, 35, 676-683.	7.5	37
64	A crystallization screen based on alternative polymeric precipitants. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 685-697.	2.5	17
65	LSm1-7 complexes bind to specific sites in viral RNA genomes and regulate their translation and replication. Rna, 2010, 16, 817-827.	3.5	41
66	Arginine methylation in subunits of mammalian pre-mRNA cleavage factor I. Rna, 2010, 16, 1646-1659.	3.5	27
67	A stimulatory role for the La-related protein 4B in translation. Rna, 2010, 16, 1488-1499.	3.5	51
68	Native purification of protein and RNA-protein complexes using a novel affinity procedure. Fly, 2009, 3, 223-231.	1.7	10
69	When one plus one equals three: Biochemistry and bioinformatics combine to answer complex questions. Fly, 2009, 3, 212-214.	1.7	1
70	IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA type 1 (DSMA1). Human Molecular Genetics, 2009, 18, 1288-1300.	2.9	88
71	Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13517-13522.	7.1	127
72	The role of RNP biogenesis in spinal muscular atrophy. Current Opinion in Cell Biology, 2009, 21, 387-393.	5.4	84

#	Article	IF	Citations
73	The Laâ€related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Reports, 2008, 9, 569-575.	4.5	152
74	Deciphering the assembly pathway of Smâ€class U snRNPs. FEBS Letters, 2008, 582, 1997-2003.	2.8	99
75	An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs. Cell, 2008, 135, 497-509.	28.9	189
76	Evolution of an RNP assembly system: A minimal SMN complex facilitates formation of UsnRNPs in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10045-10050.	7.1	92
77	Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP. Human Molecular Genetics, 2008, 17, 3236-3246.	2.9	77
78	A Comprehensive Interaction Map of the Human Survival of Motor Neuron (SMN) Complex. Journal of Biological Chemistry, 2007, 282, 5825-5833.	3.4	123
79	Dephosphorylation of survival motor neurons (SMN) by PPM1G/PP2Cγ governs Cajal body localization and stability of the SMN complex. Journal of Cell Biology, 2007, 179, 451-465.	5.2	52
80	A 5′-fluorosulfonylbenzoyladenosine-based method to identify physiological substrates of a Drosophila p21-activated kinase. Analytical Biochemistry, 2007, 368, 178-184.	2.4	6
81	Spinal muscular atrophy: the RNP connection. Trends in Molecular Medicine, 2006, 12, 113-121.	6.7	97
82	N.I.4 Analysis of the molecular basis of spinal muscular atrophy. Neuromuscular Disorders, 2006, 16, 645.	0.6	0
83	Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs. EMBO Reports, 2005, 6, 70-76.	4.5	63
84	Molecular and functional analysis of intragenic SMN1 mutations in patients with spinal muscular atrophy. Human Mutation, 2005, 25, 64-71.	2.5	101
85	Unrip, a factor implicated in cap-independent translation, associates with the cytosolic SMN complex and influences its intracellular localization. Human Molecular Genetics, 2005, 14, 3099-3111.	2.9	70
86	Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes and Development, 2005, 19, 2320-2330.	5.9	207
87	Toward an Assembly Line for U7 snRNPs. Journal of Biological Chemistry, 2005, 280, 34435-34440.	3.4	38
88	Characterization of Ighmbp2 in motor neurons and implications for the pathomechanism in a mouse model of human spinal muscular atrophy with respiratory distress type 1 (SMARD1). Human Molecular Genetics, 2004, 13, 2031-2042.	2.9	82
89	Ultrastructural characterisation of a nuclear domain highly enriched in survival of motor neuron (SMN) protein. Experimental Cell Research, 2004, 292, 312-321.	2.6	17
90	Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes and Development, 2003, 17, 2321-2333.	5.9	188

#	Article	IF	Citations
91	Epstein-Barr Virus Nuclear Antigen 2 Binds via Its Methylated Arginine-Glycine Repeat to the Survival Motor Neuron Protein. Journal of Virology, 2003, 77, 5008-5013.	3.4	49
92	Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10126-10131.	7.1	73
93	SMN-mediated assembly of RNPs: a complex story. Trends in Cell Biology, 2002, 12, 472-478.	7.9	210
94	Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO Journal, 2002, 21, 5853-5863.	7.8	173
95	Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/Bâ \in 2 and the Sm-like protein LSm4, and their interaction with the SMN protein. Rna, 2001, 7, 1531-1542.	3.5	321
96	SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome. EMBO Journal, 2001, 20, 2304-2314.	7.8	63
97	SMN tudor domain structure and its interaction with the Sm proteins. Nature Structural Biology, 2001, 8, 27-31.	9.7	285
98	A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nature Cell Biology, 2001, 3, 945-949.	10.3	284
99	Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Current Biology, 2001, 11, 1990-1994.	3.9	306
100	Evidence that fragile X mental retardation protein is a negative regulator of translation. Human Molecular Genetics, 2001, 10, 329-338.	2.9	506
101	Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy. Human Molecular Genetics, 2001, 10, 497-505.	2.9	94
102	Direct Interaction of the Spinal Muscular Atrophy Disease Protein SMN with the Small Nucleolar RNA-associated Protein Fibrillarin. Journal of Biological Chemistry, 2001, 276, 38645-38651.	3.4	147
103	The Schizosaccharomyces pombe protein Yab8p and a novel factor, Yip1p, share structural and functional similarity with the spinal muscular atrophy-associated proteins SMN and SIP1. Human Molecular Genetics, 2000, 9, 663-674.	2.9	64
104	Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Human Molecular Genetics, 2000, 9, 1977-1986.	2.9	126
105	Essential Role for the Tudor Domain of SMN in Spliceosomal U snRNP Assembly: Implications for Spinal Muscular Atrophy. Human Molecular Genetics, 1999, 8, 2351-2357.	2.9	237
106	Monoclonal antibody specific to a subclass of polyproline-arg motif provides evidence for the presence of an snRNA-free spliceosomal Sm protein complex in vivo: Implications for molecular interactions involving proline-rich sequences of Sm B/B? proteins. Journal of Cellular Biochemistry, 1999, 74, 168-180.	2.6	5
107	The Sm Core Domain Mediates Targeting of U1 snRNP to Subnuclear Compartments Involved in Transcription and Splicing. Experimental Cell Research, 1999, 249, 189-198.	2.6	15
108	Rev-mediated nuclear export of RNA is dominant over nuclear retention and is coupled to the Ran-GTPase cycle. Nucleic Acids Research, 1999, 27, 4128-4134.	14.5	45

#	Article	IF	Citations
109	High surface area carbon aerogels for supercapacitors. Journal of Non-Crystalline Solids, 1998, 225, 81-85.	3.1	309
110	Interaction of the Human Immunodeficiency Virus Type 1 Vpr Protein with the Nuclear Pore Complex. Journal of Virology, 1998, 72, 6004-6013.	3.4	168
111	A Role for the M9 Transport Signal of hnRNP A1 in mRNA Nuclear Export. Journal of Cell Biology, 1997, 137, 27-35.	5.2	234
112	RNA TRANSPORT. Annual Review of Neuroscience, 1997, 20, 269-301.	10.7	119
113	The Spinal Muscular Atrophy Disease Gene Product, SMN, and Its Associated Protein SIP1 Are in a Complex with Spliceosomal snRNP Proteins. Cell, 1997, 90, 1013-1021.	28.9	595
114	The SMN–SIP1 Complex Has an Essential Role in Spliceosomal snRNP Biogenesis. Cell, 1997, 90, 1023-1029.	28.9	612
115	HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO Journal, 1997, 16, 4531-4539.	7.8	327
116	Carbon Aerogels as Electrode Material in Supercapacitors. Journal of Porous Materials, 1997, 4, 281-285.	2.6	116
117	Chemical Synthesis of a 5â€~-Terminal TMG-Capped Triribonucleotide m32,2,7G5â€~pppAmpUmpA of U1 RNA. Journal of Organic Chemistry, 1996, 61, 4412-4422.	3.2	20
118	Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 Rev Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2936-2940.	7.1	111
119	Signal-mediated nuclear export pathways of proteins and RNAs. Trends in Cell Biology, 1996, 6, 290-293.	7.9	33
120	The HIV-1 Rev Activation Domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell, 1995, 82, 475-483.	28.9	1,113
121	Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA EMBO Journal, 1994, 13, 4105-4112.	7.8	222
122	A 69-kD protein that associates reversibly with the Sm core domain of several spliceosomal snRNP species. Journal of Cell Biology, 1994, 124, 261-272.	5.2	29
123	Nuclear transport of U1 snRNP in somatic cells: differences in signal requirement compared with Xenopus laevis oocytes Journal of Cell Biology, 1994, 125, 971-980.	5.2	48
124	Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant Journal, 1994, 6, 187-199.	5.7	308
125	m3G cap hypermethylation of U1 small nuclear ribonucleoprotein (snRNP) in vitro: evidence that the U1 small nuclear RNA-(guanosine-N2)-methyltransferase is a non-snRNP cytoplasmic protein that requires a binding site on the Sm core domain Molecular and Cellular Biology, 1994, 14, 4160-4172.	2.3	103
126	m ₃ G Cap Hypermethylation of U1 Small Nuclear Ribonucleoprotein (snRNP) In Vitro: Evidence that the U1 Small Nuclear RNA-(Guanosine- $\langle i \rangle N < i \rangle 2$)-Methyltransferase Is a Non-snRNP Cytoplasmic Protein That Requires a Binding Site on the Sm Core Domain. Molecular and Cellular Biology, 1994, 14, 4160-4172.	2.3	78

#	Article	IF	Citations
127	Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO Journal, 1994, 13, 4105-12.	7.8	143
128	A cytoplasmically anchored nuclear protein interferes specifically with the import of nuclear proteins but not U1 snRNA Journal of Cell Biology, 1993, 121, 229-240.	5.2	14
129	Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap EMBO Journal, 1993, 12, 573-583.	7.8	159
130	Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO Journal, 1993, 12, 573-83.	7.8	90
131	In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA. Molecular Biology Reports, 1992, 16, 229-240.	2.3	51
132	Diversity in the signals required for nuclear accumulation of U snRNPs and variety in the pathways of nuclear transport Journal of Cell Biology, 1991, 113, 705-714.	5.2	154
133	An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science, 1990, 249, 786-790.	12.6	233
134	An essential signalling role for the m3G cap in the transport of U1 mRNP to the nucleus. Cell Biology International Reports, 1990, 14, 193.	0.6	0
135	Analysis of genomic clones of the murine U1RNA-associated 70-kDa protein reveals a high evolutionary conservation of the protein between human and mouse. FEBS Journal, 1989, 182, 45-50.	0.2	19
136	Chromophore equilibria in bacteriorhodopsin. Biophysical Journal, 1979, 28, 211-230.	0.5	228