
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3096614/publications.pdf Version: 2024-02-01

LIBIN RONG

#	Article	IF	CITATIONS
1	A two-sex model of human papillomavirus infection: Vaccination strategies and a case study. Journal of Theoretical Biology, 2022, 536, 111006.	1.7	8
2	209 A CTS Team Approach to Modeling Migration and Suppression of CCR2+/CX3CR1+ Myeloid Cells in Glioblastoma. Journal of Clinical and Translational Science, 2022, 6, 32-32.	0.6	0
3	The impact of vaccination on human papillomavirus infection with disassortative geographical mixing: a two-patch modeling study. Journal of Mathematical Biology, 2022, 84, 43.	1.9	2
4	Modelling the dynamics of <i>Trypanosoma rangeli</i> and triatomine bug with logistic growth of vector and systemic transmission. Mathematical Biosciences and Engineering, 2022, 19, 8452-8478.	1.9	2
5	Modeling HIV multiple infection. Journal of Theoretical Biology, 2021, 509, 110502.	1.7	7
6	An economic and disease transmission model of human papillomavirus and oropharyngeal cancer in Texas. Scientific Reports, 2021, 11, 1802.	3.3	0
7	Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 3543.	0.9	2
8	A Dynamic Model to Assess Human Papillomavirus Vaccination Strategies in a Heterosexual Population Combined with Men Who have Sex with Men. Bulletin of Mathematical Biology, 2021, 83, 5.	1.9	14
9	The risk of future waves of COVID-19: modeling and data analysis. Mathematical Biosciences and Engineering, 2021, 18, 5409-5426.	1.9	10
10	84357 A TL1 Team Approach to Integrating Mathematical and Biological Models to Target Myeloid-Derived Immune Cells in Glioblastoma. Journal of Clinical and Translational Science, 2021, 5, 20-20.	0.6	0
11	Effects of New York's Executive Order on Face Mask Use on COVID-19 Infections and Mortality: A Modeling Study. Journal of Urban Health, 2021, 98, 197-204.	3.6	15
12	Projected COVID-19 epidemic in the United States in the context of the effectiveness of a potential vaccine and implications for social distancing and face mask use. Vaccine, 2021, 39, 2295-2302.	3.8	72
13	Dynamics of a new HIV model with the activation status of infected cells. Journal of Mathematical Biology, 2021, 82, 51.	1.9	3
14	Investigating the Relationship between Reopening the Economy and Implementing Control Measures during the COVID-19 Pandemic. Public Health, 2021, 200, 15-21.	2.9	10
15	A unified mathematical model of thyroid hormone regulation and implication for personalized treatment of thyroid disorders. Journal of Theoretical Biology, 2021, 528, 110853.	1.7	8
16	Modeling the Effect of Reactive Oxygen Species and CTL Immune Response on HIV Dynamics. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	1.7	0
17	A delayed reaction $\hat{a} \in \hat{a}$ diffusion viral infection model with nonlinear incidences and cell-to-cell transmission. International Journal of Biomathematics, 2021, 14, .	2.9	4
18	Stochastic investigation of HIV infection and the emergence of drug resistance. Mathematical Biosciences and Engineering, 2021, 19, 1174-1194.	1.9	1

#	Article	IF	CITATIONS
19	Analysis of an HIV Model with Immune Responses and Cell-to-Cell Transmission. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 581-607.	0.9	23
20	Nearâ€optimal control for a stochastic SIRS model with imprecise parameters. Asian Journal of Control, 2020, 22, 2090-2105.	3.0	5
21	An Age-Structured Model of HIV Latent Infection with Two Transmission Routes: Analysis and Optimal Control. Complexity, 2020, 2020, 1-22.	1.6	2
22	Modeling the viral dynamics of SARS-CoV-2 infection. Mathematical Biosciences, 2020, 328, 108438.	1.9	120
23	A stochastic epidemic model coupled with seasonal air pollution: analysis and data fitting. Stochastic Environmental Research and Risk Assessment, 2020, 34, 2245-2257.	4.0	10
24	Assessing the effects of metropolitan-wide quarantine on the spread of COVID-19 in public space and households. International Journal of Infectious Diseases, 2020, 96, 503-505.	3.3	82
25	Modeling the role of macrophages in HIV persistence during antiretroviral therapy. Journal of Mathematical Biology, 2020, 81, 369-402.	1.9	10
26	Asymptotic analysis of a vector-borne disease model with the age of infection. Journal of Biological Dynamics, 2020, 14, 332-367.	1.7	12
27	A discrete stochastic model of the COVID-19 outbreak: Forecast and control. Mathematical Biosciences and Engineering, 2020, 17, 2792-2804.	1.9	165
28	Within-Host Viral Dynamics in a Multi-compartmental Environment. Bulletin of Mathematical Biology, 2019, 81, 4271-4308.	1.9	2
29	Optimal vaccination strategy for an SIRS model with imprecise parameters and Lévy noise. Journal of the Franklin Institute, 2019, 356, 11385-11413.	3.4	23
30	Conflict and accord of optimal treatment strategies for HIV infection within and between hosts. Mathematical Biosciences, 2019, 309, 107-117.	1.9	17
31	HIV low viral load persistence under treatment: Insights from a model of cell-to-cell viral transmission. Applied Mathematics Letters, 2019, 94, 44-51.	2.7	22
32	Analysis of a stochastic HIV-1 infection model with degenerate diffusion. Applied Mathematics and Computation, 2019, 348, 437-455.	2.2	42
33	A stochastic epidemic model with nonmonotone incidence rate: Sufficient and necessary conditions for near-optimality. Information Sciences, 2018, 467, 670-684.	6.9	18
34	Age-Structured Population Modeling of HPV-related Cervical Cancer in Texas and US. Scientific Reports, 2018, 8, 14346.	3.3	7
35	The cost-effectiveness of oral HIV pre-exposure prophylaxis and early antiretroviral therapy in the presence of drug resistance among men who have sex with men in San Francisco. BMC Medicine, 2018, 16, 58.	5.5	25
36	Analysis of HIV models with two time delays. Journal of Biological Dynamics, 2017, 11, 40-64.	1.7	30

#	Article	IF	CITATIONS
37	An HIV model with age-structured latently infected cells. Journal of Biological Dynamics, 2017, 11, 192-215.	1.7	13
38	Influence of raltegravir intensification on viral load and 2-LTR dynamics in HIV patients on suppressive antiretroviral therapy. Journal of Theoretical Biology, 2017, 416, 16-27.	1.7	20
39	Modeling Pharmacodynamics on HIV Latent Infection: Choice of Drugs is Key to Successful Cure via Early Therapy. SIAM Journal on Applied Mathematics, 2017, 77, 1781-1804.	1.8	20
40	Early antiretroviral therapy and potent second-line drugs could decrease HIV incidence of drug resistance. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170525.	2.6	10
41	Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission. Journal of Biological Dynamics, 2017, 11, 455-483.	1.7	75
42	BISTABILITY ANALYSIS OF AN HIV MODEL WITH IMMUNE RESPONSE. Journal of Biological Systems, 2017, 25, 677-695.	1.4	16
43	Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes. Bulletin of Mathematical Biology, 2016, 78, 322-349.	1.9	25
44	Analysis of HIV models with multiple target cell populations and general nonlinear rates of viral infection and cell death. Mathematics and Computers in Simulation, 2016, 124, 87-103.	4.4	11
45	Modeling the effect of comprehensive interventions on Ebola virus transmission. Scientific Reports, 2015, 5, 15818.	3.3	32
46	Modeling the Slow CD4+ T Cell Decline in HIV-Infected Individuals. PLoS Computational Biology, 2015, 11, e1004665.	3.2	46
47	Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics. Mathematical Biosciences, 2015, 263, 37-50.	1.9	55
48	Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy. Journal of Theoretical Biology, 2014, 360, 137-148.	1.7	27
49	Treatment of hepatitis C with an interferon-based lead-in phase: a perspective from mathematical modelling. Antiviral Therapy, 2014, 19, 469-477.	1.0	6
50	Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents. Mathematical Biosciences, 2013, 245, 22-30.	1.9	45
51	Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model. PLoS Computational Biology, 2013, 9, e1002959.	3.2	83
52	Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses. PLoS Computational Biology, 2012, 8, e1002588.	3.2	223
53	A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data. Mathematical Biosciences, 2012, 235, 98-109.	1.9	137
54	Modeling Quasispecies and Drug Resistance in Hepatitis C Patients Treated with a Protease Inhibitor. Bulletin of Mathematical Biology, 2012, 74, 1789-1817.	1.9	38

#	Article	IF	CITATIONS
55	Rapid Emergence of Protease Inhibitor Resistance in Hepatitis C Virus. Science Translational Medicine, 2010, 2, 30ra32.	12.4	327
56	Treatment of Hepatitis C Virus Infection With Interferon and Small Molecule Direct Antivirals: Viral Kinetics and Modeling. Critical Reviews in Immunology, 2010, 30, 131-148.	0.5	68
57	Modeling Latently Infected Cell Activation: Viral and Latent Reservoir Persistence, and Viral Blips in HIV-infected Patients on Potent Therapy. PLoS Computational Biology, 2009, 5, e1000533.	3.2	194
58	Modeling HIV persistence, the latent reservoir, and viral blips. Journal of Theoretical Biology, 2009, 260, 308-331.	1.7	196
59	Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips. Mathematical Biosciences, 2009, 217, 77-87.	1.9	101
60	Mathematical Analysis of Ageâ€Structured HIVâ€1 Dynamics with Combination Antiretroviral Therapy. SIAM Journal on Applied Mathematics, 2007, 67, 731-756.	1.8	120
61	Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility. Journal of Theoretical Biology, 2007, 247, 804-818.	1.7	107
62	Emergence of HIV-1 Drug Resistance During Antiretroviral Treatment. Bulletin of Mathematical Biology, 2007, 69, 2027-2060.	1.9	153
63	New Results on the Robust Stability of Cohen–Grossberg Neural Networks with Delays. Neural Processing Letters, 2006, 24, 193-202.	3.2	19
64	LMI approach for global periodicity of neural networks with time-varying delays. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2005, 52, 1451-1458.	0.1	23