Pengcheng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3096404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compact 3D Metal Collectors Enabled by Rollâ€ŧoâ€Roll Nanoimprinting for Improving Capacitive Energy Storage. Small Methods, 2022, 6, e2101539.	8.6	5
2	Highâ€Performance Packaged 3D Lithiumâ€ion Microbatteries Fabricated Using Imprint Lithography. Advanced Materials, 2021, 33, e2006229.	21.0	43
3	Improved synthesis of Ti ₃ C ₂ T _x MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale, 2021, 13, 3572-3580.	5.6	228
4	Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteriesâ€Level Energy. Advanced Science, 2021, 8, e2004957.	11.2	16
5	A Nearly Packagingâ€Free Design Paradigm for Light, Powerful, and Energyâ€Dense Primary Microbatteries. Advanced Materials, 2021, 33, e2101760.	21.0	17
6	A Nearly Packagingâ€Free Design Paradigm for Light, Powerful, and Energyâ€Dense Primary Microbatteries (Adv. Mater. 35/2021). Advanced Materials, 2021, 33, 2170275.	21.0	0
7	Scalable fabrication of high-performance micro-supercapacitors by embedding thick interdigital microelectrodes into microcavities. Nanoscale, 2019, 11, 19772-19782.	5.6	7
8	High capacity 3D structured tin-based electroplated Li-ion battery anodes. Energy Storage Materials, 2019, 17, 151-156.	18.0	36
9	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications, 2018, 9, 2578.	12.8	121
10	Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 4421-4429.	10.3	174
11	Electroplating lithium transition metal oxides. Science Advances, 2017, 3, e1602427.	10.3	62
12	Reduced Graphene Oxide/Lil Composite Lithium Ion Battery Cathodes. Nano Letters, 2017, 17, 6893-6899.	9.1	67
13	Two-dimensional IrO2/MnO2 enabling conformal growth of amorphous Li2O2 for high-performance Li–O2 batteries. Energy Storage Materials, 2017, 9, 206-213.	18.0	32
14	High Volumetric Capacity Three-Dimensionally Sphere-Caged Secondary Battery Anodes. Nano Letters, 2016, 16, 4501-4507.	9.1	62
15	PTC MWCNT/DI-water switchable composites. Journal of Materials Chemistry A, 2015, 3, 5270-5274.	10.3	5
16	Tribological Behaviour of a Lubricant Oil Containing Boron Nitride Nanoparticles. Procedia Engineering, 2015, 102, 1038-1045.	1.2	107
17	Carbon black/octadecane composites for room temperature electrical and thermal regulation. Carbon, 2015, 94, 417-423.	10.3	24
18	Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	43

Pengcheng Sun

#	Article	IF	CITATIONS
19	Improved field electron emission from SiC assisted carbon nanorod/nanotube heterostructured arrays by using energetic Si ion irradiation. Surface and Coatings Technology, 2013, 228, S323-S327.	4.8	6
20	Enhanced Electron Field Emission from Carbon Nanotubes Irradiated by Energetic C Ions. Journal of Nanoscience and Nanotechnology, 2012, 12, 6510-6515.	0.9	5
21	H plasma processing triggered phase transformation from DLC to diamond nano-particles. Diamond and Related Materials, 2012, 25, 45-49.	3.9	1
22	Adhesive Enhancement Improved Field Emission Characteristics of Carbon Nanotube Arrays on Energetic Ion Pre-Bombarded Si Substrates. Key Engineering Materials, 2011, 483, 589-594.	0.4	4