
## Seoung Ho Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/309614/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly Conductive PEDOT:PSS Nanofibrils Induced by Solutionâ€Processed Crystallization. Advanced Materials, 2014, 26, 2268-2272.                                                                                                         | 21.0 | 856       |
| 2  | An Excimer-Based, Binuclear, Onâ^Off Switchable Calix[4]crown Chemosensor. Journal of the American Chemical Society, 2004, 126, 16499-16506.                                                                                             | 13.7 | 303       |
| 3  | Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a<br>sol–gel ZnO electron collection layer. Journal of Materials Chemistry A, 2014, 2, 17291-17296.                                      | 10.3 | 274       |
| 4  | Highly Conductive Allâ€Plastic Electrodes Fabricated Using a Novel Chemically Controlled<br>Transferâ€Printing Method. Advanced Materials, 2015, 27, 2317-2323.                                                                          | 21.0 | 239       |
| 5  | Controlling Molecular Ordering in Aqueous Conducting Polymers Using Ionic Liquids. Advanced<br>Materials, 2016, 28, 8625-8631.                                                                                                           | 21.0 | 149       |
| 6  | Molecular Taekwondo. 2. A New Calix[4]azacrown Bearing Two Different Binding Sites as a New<br>Fluorescent Ionophore. Journal of Organic Chemistry, 2003, 68, 597-600.                                                                   | 3.2  | 130       |
| 7  | Indium(III)-Induced Fluorescent Excimer Formation and Extinction in Calix[4]areneâ <sup>^</sup> Fluoroionophores.<br>Inorganic Chemistry, 2005, 44, 7866-7875.                                                                           | 4.0  | 103       |
| 8  | UV Band Splitting of Chromogenic Azo-Coupled Calix[4]crown upon Cation Complexation. Journal of Organic Chemistry, 2003, 68, 1933-1937.                                                                                                  | 3.2  | 73        |
| 9  | Regioselective Complexation of Metal Ion in Chromogenic Calix[4]biscrowns. Journal of Organic<br>Chemistry, 2004, 69, 2902-2905.                                                                                                         | 3.2  | 69        |
| 10 | Broad Workâ€Function Tunability of pâ€Type Conjugated Polyelectrolytes for Efficient Organic Solar<br>Cells. Advanced Energy Materials, 2015, 5, 1401653.                                                                                | 19.5 | 59        |
| 11 | Pyrene-appended calix[4]crowned logic gates involving normal and reverse PET: NOR, XNOR and INHIBIT. Tetrahedron, 2004, 60, 5171-5176.                                                                                                   | 1.9  | 56        |
| 12 | Silver Ion Shuttling in the Trimer-Mimic Thiacalix[4]crown Tube. Journal of Organic Chemistry, 2004,<br>69, 2877-2880.                                                                                                                   | 3.2  | 52        |
| 13 | Calix[4]crown in dual sensing functions with FRET. Tetrahedron Letters, 2005, 46, 8163-8167.                                                                                                                                             | 1.4  | 47        |
| 14 | Potassium ion-selective membrane electrodes based on 1,3-alternate calix[4]crown-5-azacrown-5.<br>Talanta, 2003, 61, 709-716.                                                                                                            | 5.5  | 39        |
| 15 | Radical Cation–Anion Couplingâ€Induced Work Function Tunability in Anionic Conjugated<br>Polyelectrolytes. Advanced Energy Materials, 2015, 5, 1501292.                                                                                  | 19.5 | 39        |
| 16 | Water-Soluble Conjugated Polyelectrolytes with Branched Polyionic Side Chains. Macromolecules, 2011, 44, 4742-4751.                                                                                                                      | 4.8  | 38        |
| 17 | Variable-Band-Gap Poly(arylene ethynylene) Conjugated Polyelectrolytes Adsorbed on Nanocrystalline<br>TiO <sub>2</sub> : Photocurrent Efficiency as a Function of the Band Gap. ACS Applied Materials &<br>Interfaces, 2009, 1, 381-387. | 8.0  | 35        |
| 18 | Long-Term Stable Recombination Layer for Tandem Polymer Solar Cells Using Self-Doped Conducting<br>Polymers. ACS Applied Materials & Interfaces, 2016, 8, 6144-6151.                                                                     | 8.0  | 34        |

SEOUNG HO LEE

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Role of the Side Chain in the Phase Segregation of Polymer:Fullerene Bulk Heterojunction Composites.<br>Advanced Energy Materials, 2013, 3, 1575-1580.                                                                 | 19.5 | 25        |
| 20 | Conjugated Polyelectrolyte Dendrimers: Aggregation, Photophysics, and Amplified Quenching.<br>Langmuir, 2012, 28, 16679-16691.                                                                                         | 3.5  | 22        |
| 21 | A Sensitive and Selective Mercury(II) Sensor Based on Amplified Fluorescence Quenching in a<br>Conjugated Polyelectrolyte/Spiro yclic Rhodamine System. Macromolecular Rapid Communications,<br>2013, 34, 791-795.     | 3.9  | 20        |
| 22 | A Color Version of the Hinsberg Test: 1°–3° Amine Indicator. Chemistry - A European Journal, 2007, 13,<br>3082-3088.                                                                                                   | 3.3  | 18        |
| 23 | Optimized phase separation in low-bandgap polymer:fullerene bulk heterojunction solar cells with criteria of solvent additives. Nano Energy, 2016, 30, 200-207.                                                        | 16.0 | 18        |
| 24 | Self-assembly of pyrene boronic acid-based chemodosimeters for highly efficient mercury(II) ion detection. Tetrahedron Letters, 2019, 60, 151048.                                                                      | 1.4  | 15        |
| 25 | Interfacial Morphology and Photoelectrochemistry of Conjugated Polyelectrolytes Adsorbed on<br>Single Crystal TiO <sub>2</sub> . Langmuir, 2011, 27, 11906-11916.                                                      | 3.5  | 11        |
| 26 | Micellization-induced amplified fluorescence response for highly sensitive detection of heparin in serum. Scientific Reports, 2020, 10, 9438.                                                                          | 3.3  | 11        |
| 27 | A micellized fluorescence sensor based on amplified quenching for highly sensitive detection of non-transferrin-bound iron in serum. Dalton Transactions, 2020, 49, 4660-4664.                                         | 3.3  | 9         |
| 28 | Optimization of graphene oxide synthesis parameters for improving their after-reduction material performance in functional electrodes. Materials Research Express, 2016, 3, 105033.                                    | 1.6  | 8         |
| 29 | A ratiometric fluorescence sensor based on enzymatically activatable micellization of TPE derivatives<br>for quantitative detection of alkaline phosphatase activity in serum. RSC Advances, 2020, 10,<br>26888-26894. | 3.6  | 8         |
| 30 | "Light Switch―Effect Upon Binding of Ru-dppz to Water-Soluble Conjugated Polyelectrolyte<br>Dendrimers. Journal of Physical Chemistry Letters, 2012, 3, 1707-1710.                                                     | 4.6  | 5         |
| 31 | A self-assembled conjugated micelle with improved sensitivity for monitoring alkaline phosphatase activity. Tetrahedron Letters, 2019, 60, 2022-2025.                                                                  | 1.4  | 5         |
| 32 | Pyridine-Chelated Imidazo[1,5-a]Pyridine N-Heterocyclic Carbene Nickel(II) Complexes for Acrylate<br>Synthesis from Ethylene and CO2. Catalysts, 2020, 10, 758.                                                        | 3.5  | 5         |
| 33 | Energy Transfer in Extended Thienylene-Phenylene-Ethynylene Dendrimers. Journal of Physical<br>Chemistry B, 2011, 115, 15214-15220.                                                                                    | 2.6  | 4         |
| 34 | Effect of Bulky Atom Substitution on Backbone Coplanarity and Electrical Properties of<br>Cyclopentadithiopheneâ€Based Semiconducting Polymers. Macromolecular Rapid Communications, 2022,<br>43, e2100709.            | 3.9  | 2         |
| 35 | Efficient Imidazoliumâ€Biomolecule Interactionâ€Assisted Amplified Quenching for Ultrasensitive<br>Detection of Heparin. Chemistry - an Asian Journal, 0, , .                                                          | 3.3  | 0         |