
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3095559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcription factor Sox4 is required for thymic tuft cell development. International Immunology, 2022, 34, 45-52.	1.8	7
2	Mechanisms of joint destruction in rheumatoid arthritis — immune cell–fibroblast–bone interactions. Nature Reviews Rheumatology, 2022, 18, 415-429.	3.5	124
3	Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nature Communications, 2022, 13, .	5.8	23
4	RANKL as the master regulator of osteoclast differentiation. Journal of Bone and Mineral Metabolism, 2021, 39, 13-18.	1.3	79
5	Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. Journal of Clinical Investigation, 2021, 131, .	3.9	25
6	The fibroblast: An emerging key player in thymic T cell selection. Immunological Reviews, 2021, 302, 68-85.	2.8	16
7	Cytokine profile in patients with chronic non-bacterial osteomyelitis, juvenile idiopathic arthritis, and insulin-dependent diabetes mellitus. Cytokine, 2021, 143, 155521.	1.4	8
8	Osteoimmunology as an intrinsic part of immunology. International Immunology, 2021, 33, 673-678.	1.8	7
9	Suppression of hematopoietic cell kinase ameliorates the bone destruction associated with inflammation. Modern Rheumatology, 2020, 30, 85-92.	0.9	5
10	OPG Production Matters Where It Happened. Cell Reports, 2020, 32, 108124.	2.9	56
11	Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδT cell compartments. Nature Communications, 2020, 11, 3769.	5.8	44
12	Fibroblasts as a source of self-antigens for central immune tolerance. Nature Immunology, 2020, 21, 1172-1180.	7.0	54
13	Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nature Metabolism, 2020, 2, 1382-1390.	5.1	60
14	Chd4 choreographs self-antigen expression for central immune tolerance. Nature Immunology, 2020, 21, 892-901.	7.0	42
15	Osteoimmunology — Bidirectional dialogue and inevitable union of the fields of bone and immunity —. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 159-169.	1.6	7
16	Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Frontiers in Immunology, 2020, 11, 620894.	2.2	28
17	Retroviral Gene Transduction into T Cell Progenitors for Analysis of T Cell Development in the Thymus. Methods in Molecular Biology, 2020, 2111, 193-203.	0.4	2

18 T Cells in The Regulation of Bone Metabolism. , 2020, , 12-19.

2

#	Article	IF	CITATIONS
19	Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nature Metabolism, 2019, 1, 868-875.	5.1	53
20	The role of bone cells in immune regulation during the course of infection. Seminars in Immunopathology, 2019, 41, 619-626.	2.8	15
21	Osteoimmunology: evolving concepts in bone–immune interactions in health and disease. Nature Reviews Immunology, 2019, 19, 626-642.	10.6	402
22	Stromal Interaction Molecule Deficiency in T Cells Promotes Spontaneous Follicular Helper T Cell Development and Causes Type 2 Immune Disorders. Journal of Immunology, 2019, 202, 2616-2627.	0.4	4
23	T cell receptor signaling for $\hat{I}^{3}\hat{I}$ T cell development. Inflammation and Regeneration, 2019, 39, 6.	1.5	51
24	Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network. Science Advances, 2019, 5, eaaw7215.	4.7	53
25	Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metabolism, 2019, 29, 627-637.e5.	7.2	112
26	Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Research, 2019, 7, 1.	5.4	72
27	Osteoimmunology. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031245.	2.9	64
28	Host defense against oral microbiota by bone-damaging T cells. Nature Communications, 2018, 9, 701.	5.8	215
29	Overview of Osteoimmunology. Calcified Tissue International, 2018, 102, 503-511.	1.5	52
30	Arginine methylation controls the strength of Î ³ c-family cytokine signaling in T cell maintenance. Nature Immunology, 2018, 19, 1265-1276.	7.0	61
31	Roles of Enhancer RNAs in RANKL-induced Osteoclast Differentiation Identified by Genome-wide Cap-analysis of Gene Expression using CRISPR/Cas9. Scientific Reports, 2018, 8, 7504.	1.6	15
32	Osteoimmunology. , 2018, , 261-282.		1
33	Mice lacking all of the <i>Skint</i> family genes. International Immunology, 2018, 30, 301-309.	1.8	11
34	RANKL inhibition -Bone and beyond Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY42-1.	0.0	0
35	Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nature Immunology, 2017, 18, 675-682.	7.0	119
36	Human thymoproteasome variations influence CD8 T cell selection. Science Immunology, 2017, 2, .	5.6	16

#	Article	IF	CITATIONS
37	The Mechanisms of T Cell Selection in the Thymus. Trends in Immunology, 2017, 38, 805-816.	2.9	199
38	Identification of a p53 target, CD137L, that mediates growth suppression and immune response of osteosarcoma cells. Scientific Reports, 2017, 7, 10739.	1.6	3
39	Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver. Biochemical and Biophysical Research Communications, 2017, 493, 437-443.	1.0	14
40	Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Scientific Reports, 2017, 7, 8753.	1.6	65
41	Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 2017, 97, 1295-1349.	13.1	347
42	RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer. Genes and Development, 2017, 31, 2099-2112.	2.7	32
43	Osteoimmunology in Bone Fracture Healing. Current Osteoporosis Reports, 2017, 15, 367-375.	1.5	133
44	LOX Fails to Substitute for RANKL in Osteoclastogenesis. Journal of Bone and Mineral Research, 2017, 32, 434-439.	3.1	41
45	γÎTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. Journal of Clinical Investigation, 2017, 128, 415-426.	3.9	32
46	Intravital imaging of Ca2+ signals in lymphocytes of Ca2+ biosensor transgenic mice: indication of autoimmune diseases before the pathological onset. Scientific Reports, 2016, 6, 18738.	1.6	28
47	IL-17-producing Î ³ δT cells enhance bone regeneration. Nature Communications, 2016, 7, 10928.	5.8	271
48	Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity, 2016, 44, 1434-1443.	6.6	99
49	RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Annals of the Rheumatic Diseases, 2016, 75, 1187-1195.	0.5	177
50	Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes. Oncotarget, 2016, 7, 26966-26978.	0.8	48
51	The thymic cortical epithelium determines the <scp>TCR</scp> repertoire of <scp>IL</scp> â€17â€producing γÎ⊤ cells. EMBO Reports, 2015, 16, 638-653.	2.0	45
52	SnapShot: Osteoimmunology. Cell Metabolism, 2015, 21, 502-502.e1.	7.2	20
53	Inhibition of the TNF Family Cytokine RANKL Prevents Autoimmune Inflammation in the Central Nervous System. Immunity, 2015, 43, 1174-1185.	6.6	65
54	Regulatory T cells in Arthritis. Progress in Molecular Biology and Translational Science, 2015, 136, 207-215.	0.9	24

#	Article	IF	CITATIONS
55	Two-faced immunology—from osteogenesis to bone resorption. Nature Reviews Rheumatology, 2015, 11, 74-76.	3.5	48
56	DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine–producing metabolic pathway. Nature Medicine, 2015, 21, 281-287.	15.2	190
57	Phosphoproteomic analysis of kinase-deficient mice reveals multiple TAK1 targets in osteoclast differentiation. Biochemical and Biophysical Research Communications, 2015, 463, 1284-1290.	1.0	12
58	lmmune complexes regulate bone metabolism through FcRÎ ³ signalling. Nature Communications, 2015, 6, 6637.	5.8	110
59	Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell, 2015, 163, 975-987.	13.5	327
60	Arthritogenic T cells in autoimmune arthritis. International Journal of Biochemistry and Cell Biology, 2015, 58, 92-96.	1.2	23
61	Runx2-I Isoform Contributes to Fetal Bone Formation Even in the Absence of Specific N-Terminal Amino Acids. PLoS ONE, 2014, 9, e108294.	1.1	15
62	Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell–cell fusion. Biochemical and Biophysical Research Communications, 2014, 455, 305-311.	1.0	17
63	Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nature Medicine, 2014, 20, 62-68.	15.2	930
64	The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss. Bone, 2014, 60, 8-15.	1.4	50
65	The immune system, bone and RANKL. Archives of Biochemistry and Biophysics, 2014, 561, 118-123.	1.4	82
66	Immunology and bone. Journal of Biochemistry, 2013, 154, 29-39.	0.9	93
67	Stage-specific functions of leukemia/lymphoma-related factor (LRF) in the transcriptional control of osteoclast development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2561-2566.	3.3	59
68	Inflammation and Bone Destruction in Arthritis: Synergistic Activity of Immune and Mesenchymal Cells in Joints. Frontiers in Immunology, 2012, 3, 77.	2.2	87
69	Osteoprotection by semaphorin 3A. Nature, 2012, 485, 69-74.	13.7	501
70	Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B–mediated vesicle transport. Journal of Bone and Mineral Research, 2012, 27, 2464-2475.	3.1	35
71	Bone cell communication factors and Semaphorins. BoneKEy Reports, 2012, 1, 183.	2.7	76
72	New developments in osteoimmunology. Nature Reviews Rheumatology, 2012, 8, 684-689.	3.5	213

#	Article	IF	CITATIONS
73	New insights into osteoclastogenic signaling mechanisms. Trends in Endocrinology and Metabolism, 2012, 23, 582-590.	3.1	275
74	Autoimmune Arthritis. Advances in Immunology, 2012, 115, 45-71.	1.1	74
75	Inhibitory effect of chloroquine on bone resorption reveals the key role of lysosomes in osteoclast differentiation and function. Inflammation and Regeneration, 2012, 32, 222-231.	1.5	9
76	Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nature Medicine, 2011, 17, 1473-1480.	15.2	426
77	The role of the BH3-only protein Noxa in bone homeostasis. Biochemical and Biophysical Research Communications, 2011, 410, 620-625.	1.0	15
78	Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine, 2011, 17, 1231-1234.	15.2	1,593
79	Potential molecular targets for suppressing Th17 development. Inflammation and Regeneration, 2011, 31, 354-360.	1.5	0
80	lκBζ regulates TH17 development by cooperating with ROR nuclear receptors. Nature, 2010, 464, 1381-1385.	13.7	361
81	New immune connections in osteoclast formation. Annals of the New York Academy of Sciences, 2010, 1192, 117-123.	1.8	79
82	Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3117-3122.	3.3	156
83	Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation. Biochemical and Biophysical Research Communications, 2010, 393, 432-438.	1.0	22
84	Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. Journal of Clinical Investigation, 2010, 120, 3455-3465.	3.9	152
85	Rheumatoid arthritis associated with osteopetrosis. Modern Rheumatology, 2009, 19, 687-690.	0.9	21
86	Osteoimmunology: Crosstalk Between the Immune and Bone Systems. Journal of Clinical Immunology, 2009, 29, 555-567.	2.0	191
87	Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nature Medicine, 2009, 15, 1066-1071.	15.2	270
88	Ca ²⁺ â€NFATc1 signaling is an essential axis of osteoclast differentiation. Immunological Reviews, 2009, 231, 241-256.	2.8	355
89	The Unexpected Link Between Osteoclasts and the Immune System. Advances in Experimental Medicine and Biology, 2009, 658, 61-68.	0.8	29
90	Osteoimmunology and the effects of the immune system on bone. Nature Reviews Rheumatology, 2009, 5, 667-676.	3.5	395

#	Article	IF	CITATIONS
91	Cathepsin K-Dependent Toll-Like Receptor 9 Signaling Revealed in Experimental Arthritis. Science, 2008, 319, 624-627.	6.0	401
92	The Tumor Necrosis Factor Family Receptors RANK and CD40 Cooperatively Establish the Thymic Medullary Microenvironment and Self-Tolerance. Immunity, 2008, 29, 423-437.	6.6	434
93	The Cytokine RANKL Produced by Positively Selected Thymocytes Fosters Medullary Thymic Epithelial Cells that Express Autoimmune Regulator. Immunity, 2008, 29, 438-450.	6.6	375
94	Tyrosine Kinases Btk and Tec Regulate Osteoclast Differentiation by Linking RANK and ITAM Signals. Cell, 2008, 132, 794-806.	13.5	297
95	Interaction between the immune system and bone metabolism: an emerging field of osteoimmunology. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2007, 83, 136-143.	1.6	12
96	Estrogen Prevents Bone Loss via Estrogen Receptor $\hat{I}\pm$ and Induction of Fas Ligand in Osteoclasts. Cell, 2007, 130, 811-823.	13.5	866
97	The molecular understanding of osteoclast differentiation. Bone, 2007, 40, 251-264.	1.4	1,177
98	Scientific basis for the efficacy of combined use of antirheumatic drugs against bone destruction in rheumatoid arthritis. Modern Rheumatology, 2007, 17, 17-23.	0.9	33
99	Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nature Reviews Immunology, 2007, 7, 292-304.	10.6	1,674
100	The Role of NFAT in Osteoclast Formation. Annals of the New York Academy of Sciences, 2007, 1116, 227-237.	1.8	395
101	Novel Signaling Pathways and Therapeutic Targets in Osteoclasts. Advances in Experimental Medicine and Biology, 2007, 602, 93-96.	0.8	5
102	Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. Journal of Experimental Medicine, 2006, 203, 2673-2682.	4.2	1,320
103	Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nature Medicine, 2006, 12, 1410-1416.	15.2	302
104	Inflammatory bone destruction and osteoimmunology. Journal of Periodontal Research, 2005, 40, 287-293.	1.4	227
105	Interplay between interferon and other cytokine systems in bone metabolism. Immunological Reviews, 2005, 208, 181-193.	2.8	158
106	Stat1-mediated cytoplasmic attenuation in osteoimmunology. Journal of Cellular Biochemistry, 2005, 94, 232-240.	1.2	39
107	Mechanistic insight into osteoclast differentiation in osteoimmunology. Journal of Molecular Medicine, 2005, 83, 170-179.	1.7	362
108	Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. Journal of Experimental Medicine, 2005, 202, 1261-1269.	4.2	758

#	Article	IF	CITATIONS
109	Osteoimmunological insight into bone damage in rheumatoid arthritis. Modern Rheumatology, 2005, 15, 225-231.	0.9	12
110	Osteoimmunological insight into bone damage in rheumatoid arthritis. Modern Rheumatology, 2005, 15, 225-231.	0.9	8
111	Essential Role of p38 Mitogen-activated Protein Kinase in Cathepsin K Gene Expression during Osteoclastogenesis through Association of NFATc1 and PU.1. Journal of Biological Chemistry, 2004, 279, 45969-45979.	1.6	365
112	Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature, 2004, 428, 758-763.	13.7	782
113	Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Research, 2002, 4, S227.	2.0	138
114	Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Developmental Cell, 2002, 3, 889-901.	3.1	2,221
115	RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature, 2002, 416, 744-749.	13.7	783
116	Antiviral response by natural killer cells throughTRAIL gene induction by IFN-α/β. European Journal of Immunology, 2001, 31, 3138-3146.	1.6	241
117	Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism, 2000, 43, 259.	6.7	577
118	T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-Î ³ . Nature, 2000, 408, 600-605.	13.7	1,247
119	In Vitro and In Vivo Suppression of Osteoclast Function by Adenovirus Vector-Induced csk Gene. Journal of Bone and Mineral Research, 2000, 15, 41-51.	3.1	38
120	Modulation of Osteoclast Function by Adenovirus Vector-Induced Epidermal Growth Factor Receptor. Journal of Bone and Mineral Research, 1998, 13, 1714-1720.	3.1	48
121	A New Mechanism of Bone Destruction in Rheumatoid Arthritis: Synovial Fibroblasts Induce Osteoclastogenesis. Biochemical and Biophysical Research Communications, 1997, 240, 279-286.	1.0	181