Enrique M Toledo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094593/publications.pdf

Version: 2024-02-01

30 papers

2,820 citations

20 h-index 414414 32 g-index

34 all docs

34 docs citations

times ranked

34

5306 citing authors

#	Article	IF	CITATIONS
1	TCF7L2 plays a complex role in human adipose progenitor biology, which might contribute to genetic susceptibility to type 2 diabetes. Metabolism: Clinical and Experimental, 2022, 133, 155240.	3.4	6
2	Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure. IScience, 2021, 24, 102552.	4.1	9
3	Combinatorial ECM Arrays Identify Cooperative Roles for Matricellular Proteins in Enhancing the Generation of TH+ Neurons From Human Pluripotent Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 755406.	3.7	5
4	Functional module detection through integration of single-cell RNA sequencing data with protein–protein interaction networks. BMC Genomics, 2020, 21, 756.	2.8	13
5	Srebf1 Controls Midbrain Dopaminergic Neurogenesis. Cell Reports, 2020, 31, 107601.	6.4	20
6	Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift. Nature Communications, 2018, 9, 2595.	12.8	16
7	A Zeb2-miR-200c loop controls midbrain dopaminergic neuron neurogenesis and migration. Communications Biology, 2018, 1, 75.	4.4	13
8	The Matricellular Protein R-Spondin 2 Promotes Midbrain Dopaminergic Neurogenesis and Differentiation. Stem Cell Reports, 2018, 11, 651-664.	4.8	22
9	Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nature Biotechnology, 2017, 35, 444-452.	17.5	278
10	Mapping genes for calcium signaling and their associated human genetic disorders. Bioinformatics, 2017, 33, 2547-2554.	4.1	16
11	Translation of WNT developmental programs into stem cell replacement strategies for the treatment of Parkinson's disease. British Journal of Pharmacology, 2017, 174, 4716-4724.	5.4	18
12	Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP. Science Signaling, 2017, 10 , .	3.6	47
13	Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell, 2016, 167, 566-580.e19.	28.9	687
14	A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease. EMBO Journal, 2016, 35, 1963-1978.	7.8	85
15	Anti–Ribosomal P Protein Autoantibodies From Patients With Neuropsychiatric Lupus Impair Memory in Mice. Arthritis and Rheumatology, 2015, 67, 204-214.	5 . 6	90
16	Peroxisome Proliferators Reduce Spatial Memory Impairment, Synaptic Failure, and Neurodegeneration in Brains of a Double Transgenic Mice Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 33, 941-959.	2.6	49
17	Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nature Chemical Biology, 2013, 9, 126-133.	8.0	116
18	SFRP1 and SFRP2 Doseâ€Dependently Regulate Midbrain Dopamine Neuron Development In Vivo and in Embryonic Stem Cells. Stem Cells, 2012, 30, 865-875.	3.2	58

#	Article	IF	Citations
19	c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiology of Aging, 2011, 32, 1249-1261.	3.1	91
20	Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer's disease. Molecular Psychiatry, 2010, 15, 272-285.	7.9	240
21	Calcium/calmodulinâ€dependent protein kinase type IV is a target gene of the <i>Wnt</i> /ı̂²â€catenin signaling pathway. Journal of Cellular Physiology, 2009, 221, 658-667.	4.1	71
22	The role of Wnt signaling in neuroprotection. Drug News and Perspectives, 2009, 22, 579.	1.5	30
23	The role of Wnt signaling in neuroprotection. Drug News and Perspectives, 2009, 22, 579.	1.5	47
24	The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Molecular Neurodegeneration, 2008, 3, 9.	10.8	164
25	Release of acetylcholinesterase (AChE) from \hat{l}^2 -amyloid plaques assemblies improves the spatial memory impairments in APP-transgenic mice. Chemico-Biological Interactions, 2008, 175, 142-149.	4.0	37
26	Wnt signaling in neuroprotection and stem cell differentiation. Progress in Neurobiology, 2008, 86, 281-296.	5.7	182
27	STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's \hat{I}^2 -amyloid deposits. Brain, 2008, 131, 2425-2442.	7.6	136
28	Wnt-7a Induces Presynaptic Colocalization of Â7-Nicotinic Acetylcholine Receptors and Adenomatous Polyposis Coli in Hippocampal Neurons. Journal of Neuroscience, 2007, 27, 5313-5325.	3.6	101
29	The functional links between prion protein and copper. Biological Research, 2006, 39, 39-44.	3.4	20
30	Induction of cellular prion protein gene expression by copper in neurons. American Journal of Physiology - Cell Physiology, 2006, 290, C271-C281.	4.6	58