
Luca Malcovati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood, 2012, 120, 2454-2465.	1.4	2,458
2	Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. New England Journal of Medicine, 2013, 369, 2379-2390.	27.0	1,698
3	Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013, 122, 3616-3627.	1.4	1,562
4	Time-Dependent Prognostic Scoring System for Predicting Survival and Leukemic Evolution in Myelodysplastic Syndromes. Journal of Clinical Oncology, 2007, 25, 3503-3510.	1.6	969
5	International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, 2022, 140, 1200-1228.	1.4	814
6	Prognostic Factors and Life Expectancy in Myelodysplastic Syndromes Classified According to WHO Criteria: A Basis for Clinical Decision Making. Journal of Clinical Oncology, 2005, 23, 7594-7603.	1.6	804
7	Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood, 2013, 122, 2943-2964.	1.4	567
8	Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood, 2011, 118, 6239-6246.	1.4	457
9	Clinical significance of somatic mutation in unexplained blood cytopenia. Blood, 2017, 129, 3371-3378.	1.4	379
10	Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature Medicine, 2020, 26, 1549-1556.	30.7	372
11	SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood, 2015, 126, 233-241.	1.4	361
12	Myelodysplastic Syndromes — Coping with Ineffective Hematopoiesis. New England Journal of Medicine, 2005, 352, 536-538.	27.0	306
13	The genetic basis of myelodysplasia and its clinical relevance. Blood, 2013, 122, 4021-4034.	1.4	294
14	Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood, 2017, 129, 1753-1762.	1.4	278
15	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	16.8	272
16	Erythropoietin and Granulocyte-Colony Stimulating Factor Treatment Associated With Improved Survival in Myelodysplastic Syndrome. Journal of Clinical Oncology, 2008, 26, 3607-3613.	1.6	270
17	Role of Reduced-Intensity Conditioning Allogeneic Hematopoietic Stem-Cell Transplantation in Older Patients With De Novo Myelodysplastic Syndromes: An International Collaborative Decision Analysis. Journal of Clinical Oncology, 2013, 31, 2662-2670.	1.6	265
18	Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood, 2013, 121, 3005-3015.	1.4	251

#	Article	IF	CITATIONS
19	Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood, 2016, 128, 1408-1417.	1.4	249
20	Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based Prognostic Scoring System (WPSS). Haematologica, 2011, 96, 1433-1440.	3.5	247
21	Clinical Relevance of Bone Marrow Fibrosis and CD34-Positive Cell Clusters in Primary Myelodysplastic Syndromes. Journal of Clinical Oncology, 2009, 27, 754-762.	1.6	225
22	Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood, 2014, 124, 1513-1521.	1.4	222
23	Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. Haematologica, 2011, 96, 441-449.	3.5	220
24	Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood, 2006, 108, 337-345.	1.4	198
25	Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nature Communications, 2015, 6, 5901.	12.8	196
26	<i>SF3B1</i> -mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood, 2020, 136, 157-170.	1.4	195
27	WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood, 2008, 112, 895-902.	1.4	192
28	Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood, 2018, 132, 1225-1240.	1.4	168
29	Predictive factors for the outcome of allogeneic transplantation in patients with MDS stratified according to the revised IPSS-R. Blood, 2014, 123, 2333-2342.	1.4	162
30	An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood, 2015, 125, 1857-1865.	1.4	153
31	Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget, 2017, 8, 73483-73500.	1.8	153
32	Gene expression profiling of CD34 ⁺ cells in patients with the 5qâ^' syndrome. British Journal of Haematology, 2007, 139, 578-589.	2.5	146
33	Prognostic impact of pre-transplantation transfusion history and secondary iron overload in patients with myelodysplastic syndrome undergoing allogeneic stem cell transplantation: a GITMO study. Haematologica, 2010, 95, 476-484.	3.5	144
34	Time-dependent changes in mortality and transformation risk in MDS. Blood, 2016, 128, 902-910.	1.4	140
35	Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nature Communications, 2018, 9, 3649.	12.8	140
36	Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood, 2009, 114, 3538-3545.	1.4	135

#	Article	IF	CITATIONS
37	Predicting survival and leukemic evolution in patients with myelodysplastic syndrome. Haematologica, 2006, 91, 1588-90.	3.5	130
38	Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood, 2013, 121, 260-269.	1.4	124
39	Impact of transfusion dependency and secondary iron overload on the survival of patients with myelodysplastic syndromes. Leukemia Research, 2007, 31, S2-S6.	0.8	117
40	Recurrent ETNK1 mutations in atypical chronic myeloid leukemia. Blood, 2015, 125, 499-503.	1.4	115
41	The Role of the Iron Transporter ABCB7 in Refractory Anemia with Ring Sideroblasts. PLoS ONE, 2008, 3, e1970.	2.5	113
42	ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Advances, 2019, 3, 2962-2979.	5.2	110
43	Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica, 2019, 104, 1935-1949.	3.5	93
44	Diagnosis and Treatment of Chronic Myelomonocytic Leukemias in Adults. HemaSphere, 2018, 2, e150.	2.7	91
45	Somatic Mutations in MDS Patients Are Associated with Clinical Features and Predict Prognosis Independent of the IPSS-R: Analysis of Combined Datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood, 2015, 126, 907-907.	1.4	85
46	Clinical features and course of refractory anemia with ring sideroblasts associated with marked thrombocytosis. Haematologica, 2012, 97, 1036-1041.	3.5	79
47	Splenectomy for treatment of immune thrombocytopenic purpura. Haematologica, 2005, 90, 4.	3.5	75
48	The shadowlands of MDS: idiopathic cytopenias of undetermined significance (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP). Hematology American Society of Hematology Education Program, 2015, 2015, 299-307.	2.5	72
49	Validation of the revised international prognostic scoring system (<scp>IPSS</scp> â€R) in patients with lowerâ€risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet <scp>MDS</scp> (<scp>EUMDS</scp>) registry. British Journal of Haematology, 2015, 170, 372-383.	2.5	72
50	Classification and Prognostic Evaluation of Myelodysplastic Syndromes. Seminars in Oncology, 2011, 38, 627-634.	2.2	71
51	The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes. Journal of Clinical Investigation, 2017, 127, 2206-2221.	8.2	69
52	Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study. Leukemia, 2018, 32, 1380-1392.	7.2	66
53	Gene expression and risk of leukemic transformation in myelodysplasia. Blood, 2017, 130, 2642-2653.	1.4	64
54	Optimal timing of allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic syndrome. American Journal of Hematology, 2013, 88, 581-588.	4.1	61

#	Article	IF	CITATIONS
55	Clinical, histopathological and molecular characterization of hypoplastic myelodysplastic syndrome. Leukemia, 2019, 33, 2495-2505.	7.2	61
56	Red blood cell transfusion-dependency implies a poor survival in primary myelofibrosis irrespective of IPSS and DIPSS. Haematologica, 2011, 96, 167-170.	3.5	60
57	CHIP, CCUS, and Other Acronyms: Definition, Implications, and Impact on Practice. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 400-410.	3.8	58
58	Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood, 2021, 138, 965-976.	1.4	58
59	Inappropriately low hepcidin levels in patients with myelodysplastic syndrome carrying a somatic mutation of SF3B1. Haematologica, 2013, 98, 420-423.	3.5	51
60	Combined Cohesin–RUNX1 Deficiency Synergistically Perturbs Chromatin Looping and Causes Myelodysplastic Syndromes. Cancer Discovery, 2020, 10, 836-853.	9.4	51
61	Myelodysplastic Syndromes: Diagnosis and Staging. Cancer Control, 2008, 15, 4-13.	1.8	48
62	Clinical features and survival of patients with indolent systemic mastocytosis defined by the updated WHO classification. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1927-1938.	5.7	47
63	Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nature Cell Biology, 2022, 24, 299-306.	10.3	47
64	Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood, 2016, 128, 2096-2097.	1.4	46
65	Identification of Gene Expression–Based Prognostic Markers in the Hematopoietic Stem Cells of Patients With Myelodysplastic Syndromes. Journal of Clinical Oncology, 2013, 31, 3557-3564.	1.6	45
66	The Data Registry of the European Competence Network on Mastocytosis (ECNM): Set Up, Projects, and Perspectives. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 81-87.	3.8	42
67	Clinical relevance of extra-hematologic comorbidity in the management of patients with myelodysplastic syndrome. Haematologica, 2009, 94, 602-606.	3.5	41
68	Prognostic Classification and Risk Assessment in Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2010, 24, 459-468.	2.2	39
69	Refractory anemia with ring sideroblasts. Best Practice and Research in Clinical Haematology, 2013, 26, 377-385.	1.7	37
70	Recognition of familial myeloid neoplasia in adults. Seminars in Hematology, 2017, 54, 60-68.	3.4	37
71	Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes. Haematologica, 2020, 105, 632-639.	3.5	35
72	Prognostic impact of eosinophils in mastocytosis: analysis of 2350 patients collected in the ECNM Registry. Leukemia, 2020, 34, 1090-1101.	7.2	34

#	Article	IF	CITATIONS
73	Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing. Hematology American Society of Hematology Education Program, 2015, 2015, 19-25.	2.5	32
74	Impact of treatment with iron chelation therapy in patients with lower-risk myelodysplastic syndromes participating in the European MDS registry. Haematologica, 2020, 105, 640-651.	3.5	32
75	Loss of lenalidomide-induced megakaryocytic differentiation leads to therapy resistance in del(5q) myelodysplastic syndrome. Nature Cell Biology, 2020, 22, 526-533.	10.3	30
76	Mutational spectrum and dynamics of clonal hematopoiesis in anemia of older individuals. Blood, 2020, 135, 1161-1170.	1.4	30
77	The RUNX1 database (RUNX1db): establishment of an expert curated RUNX1 registry and genomics database as a public resource for familial platelet disorder with myeloid malignancy. Haematologica, 2021, 106, 3004-3007.	3.5	29
78	Refined diagnostic criteria for bone marrow mastocytosis: a proposal of the European competence network on mastocytosis. Leukemia, 2022, 36, 516-524.	7.2	29
79	Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12332-12340.	7.1	28
80	Infection perturbs Bach2- and Bach1-dependent erythroid lineage â€~choice' to cause anemia. Nature Immunology, 2018, 19, 1059-1070.	14.5	27
81	appreci8: a pipeline for precise variant calling integrating 8 tools. Bioinformatics, 2018, 34, 4205-4212.	4.1	26
82	Cytogenetic and molecular aberrations and worse outcome for male patients in systemic mastocytosis. Theranostics, 2021, 11, 292-303.	10.0	26
83	Recent advances in the understanding of myelodysplastic syndromes with ring sideroblasts. British Journal of Haematology, 2016, 174, 847-858.	2.5	25
84	Disclosing the Impact of Carcinogenic SF3b Mutations on Pre-mRNA Recognition Via All-Atom Simulations. Biomolecules, 2019, 9, 633.	4.0	23
85	Atomic-Level Mechanism of Pre-mRNA Splicing in Health and Disease. Accounts of Chemical Research, 2021, 54, 144-154.	15.6	23
86	Transfusion-Dependency Is the Most Important Prognostic Factor for Survival in 1000 Newly Diagnosed MDS Patients with Low- and Intermediate-1 Risk MDS in the European LeukemiaNet MDS Registry. Blood, 2011, 118, 2775-2775.	1.4	20
87	Red Bood Cell Transfusion Therapy and Iron Chelation in Patients With Myelodysplastic Syndromes. Clinical Lymphoma and Myeloma, 2009, 9, S305-S311.	1.4	19
88	Early platelet count kinetics has prognostic value in lower-risk myelodysplastic syndromes. Blood Advances, 2018, 2, 2079-2089.	5.2	18
89	A WHO Classification-Based Prognostic Scoring System (WPSS) for Predicting Survival in Myelodysplastic Syndromes Blood, 2005, 106, 788-788.	1.4	18
90	Co-mutation pattern, clonal hierarchy, and clone size concur to determine disease phenotype of SRSF2P95-mutated neoplasms. Leukemia, 2021, 35, 2371-2381.	7.2	17

#	Article	IF	CITATIONS
91	<i>ZBTB33</i> Is Mutated in Clonal Hematopoiesis and Myelodysplastic Syndromes and Impacts RNA Splicing. Blood Cancer Discovery, 2021, 2, 500-517.	5.0	17
92	Incidence and prognosis of clonal hematopoiesis in patients with chronic idiopathic neutropenia. Blood, 2021, 138, 1249-1257.	1.4	15
93	Distinct Genetic Lesions Drive Leukemogenesis in Secondary Acute Myeloid Leukemia,. Blood, 2011, 118, 3559-3559.	1.4	15
94	Somatic mutations of calreticulin in myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms. Haematologica, 2014, 99, 1650-1652.	3.5	14
95	Impact of Treatment with Iron Chelators in Lower-Risk MDS Patients Participating in the European Leukemianet MDS (EUMDS) Registry. Blood, 2016, 128, 3186-3186.	1.4	14
96	Distinct and convergent consequences of splice factor mutations in myelodysplastic syndromes. American Journal of Hematology, 2020, 95, 133-143.	4.1	13
97	Guideline-based indicators for adult patients with myelodysplastic syndromes. Blood Advances, 2020, 4, 4029-4044.	5.2	12
98	A predictive algorithm using clinical and laboratory parameters may assist in ruling out and in diagnosing MDS. Blood Advances, 2021, 5, 3066-3075.	5.2	12
99	Treatment with Erythropoietin and G-CSF Improves Survival in MDS Patients with Low Transfusion Need Blood, 2006, 108, 521-521.	1.4	12
100	Novel dynamic outcome indicators and clinical endpoints in myelodysplastic syndrome; the European LeukemiaNet MDS Registry and MDS-RIGHT project perspective. Haematologica, 2020, 105, 2516-2523.	3.5	12
101	GFI136N as a therapeutic and prognostic marker for myelodysplastic syndrome. Experimental Hematology, 2016, 44, 590-595.e1.	0.4	11
102	Cytomorphology review of 100 newly diagnosed lower-risk MDS patients in the European LeukemiaNet MDS (EUMDS) registry reveals a high inter-observer concordance. Annals of Hematology, 2017, 96, 1105-1112.	1.8	11
103	EHA evaluation of the ESMO—Magnitude of Clinical Benefit Scale version 1.1 (ESMO-MCBS v1.1) for haematological malignancies. ESMO Open, 2020, 5, e000611.	4.5	10
104	A geno-clinical decision model for the diagnosis of myelodysplastic syndromes. Blood Advances, 2021, 5, 4361-4369.	5.2	9
105	Investigating the Molecular Mechanism of H3B-8800: A Splicing Modulator Inducing Preferential Lethality in Spliceosome-Mutant Cancers. International Journal of Molecular Sciences, 2021, 22, 11222.	4.1	9
106	The genomic landscape of myeloid neoplasms with myelodysplasia and its clinical implications. Current Opinion in Oncology, 2015, 27, 551-559.	2.4	8
107	Gene expression profile correlates with molecular and clinical features in patients with myelofibrosis. Blood Advances, 2021, 5, 1452-1462.	5.2	8
108	Monocytosis and its association with clonal hematopoiesis in community-dwelling individuals. Blood Advances, 2022, 6, 4174-4184.	5.2	8

#	Article	IF	CITATIONS
109	Mitochondrial Ferritin Expression and Clonality of Hematopoiesis in Patients with Refractory Anemia with Ringed Sideroblasts Blood, 2005, 106, 3444-3444.	1.4	7
110	Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and chromatin landscape of <i>SF3B1</i> -mutant HSPCs. Blood Advances, 2022, 6, 2992-3005.	5.2	7
111	Effects of breathing control on cardiocirculatory modulation in Caucasian lowlanders and Himalayan Sherpas. European Journal of Applied Physiology, 2000, 83, 481-486.	2.5	6
112	The relevance of transfusionâ€dependency in the prognostic assessment of patients with myeloid neoplasms. American Journal of Hematology, 2011, 86, 241-243.	4.1	6
113	Clinical evaluation of extra-hematologic comorbidity in myelodysplastic syndromes: ready-to-wear versus made-to-measure tool. Haematologica, 2012, 97, 631-632.	3.5	6
114	Peripheral blood cytopenias in the aging general population and risk of incident hematological disease and mortality. Blood Advances, 2021, 5, 3266-3278.	5.2	6
115	Early Mortality in 1000 Newly Diagnosed MDS Patients with Low- and Intermediate-1 Risk MDS in the European Leukemianet MDS (EUMDS) Registry. Blood, 2012, 120, 3830-3830.	1.4	6
116	Comprehensive Analysis of Aberrant RNA Splicing in Myelodysplastic Syndromes. Blood, 2014, 124, 826-826.	1.4	6
117	Iron overloadâ€related heart failure in a patient with transfusionâ€dependent myelodysplastic syndrome reversed by intensive combined chelation therapy. Clinical Case Reports (discontinued), 2015, 3, 952-954.	0.5	4
118	Prognostic impact of a suboptimal number of analyzed metaphases in normal karyotype lower-risk MDS. Leukemia Research, 2018, 67, 21-26.	0.8	4
119	Clonal hematopoiesis and myeloid malignancies. Current Opinion in Hematology, 2021, Publish Ahead of Print, 347-355.	2.5	4
120	A Prognostic Model for Predicting the Impact of Comorbidities on Survival of Patients with Myelodysplastic Syndromes Blood, 2007, 110, 2453-2453.	1.4	4
121	SF3B1 Mutation Is an Independent Predictor of Parenchymal Iron Overload in Myelodysplastic Syndromes. Blood, 2015, 126, 1678-1678.	1.4	4
122	Vascular endothelial growth factor overexpression in myelodysplastic syndrome bone marrow cells: biological and clinical implications. Leukemia and Lymphoma, 2017, 58, 1711-1720.	1.3	3
123	Autoantibodies against type I IFNs in patients with Ph-negative myeloproliferative neoplasms. Blood, 2022, 139, 2716-2720.	1.4	3
124	The EHA Research Roadmap: Malignant Myeloid Diseases. HemaSphere, 2021, 5, e635.	2.7	2
125	A Personalized Clinical-Decision Tool to Improve the Diagnostic Accuracy of Myelodysplastic Syndromes. Blood, 2020, 136, 33-35.	1.4	2
126	The Effect of Transfusion Dependency and Secondary Iron Overload on Survival of Patients with Myelodysplastic Syndrome Blood, 2005, 106, 791-791.	1.4	2

#	Article	IF	CITATIONS
127	Mutation Analysis of TET2 Reveals the Clonal Nature of Refractory Anemia with Ring Sideroblasts. Blood, 2010, 116, 1862-1862.	1.4	2
128	Different Mutant Splicing Factors Cause Distinct Missplicing Events and Give Rise to Different Clinical Phenotypes in Myelodysplastic Syndromes. Blood, 2015, 126, 139-139.	1.4	2
129	Mutation Profiles Identify Distinct Clusters of Lower Risk Myelodysplastic Syndromes with Unique Clinical and Biological Features and Clinical Endpoints. Blood, 2020, 136, 29-29.	1.4	2
130	The journey of a thousand miles begins with 1 step. Blood, 2021, 138, 824-826.	1.4	1
131	MDS Diagnosis: Many Patients May Not Require Bone Marrow Examination. Blood, 2018, 132, 4357-4357.	1.4	1
132	Genotype-Phenotype Correlations in Patients with Myeloid Malignancies Using Explainable Artificial Intelligence. Blood, 2020, 136, 31-32.	1.4	1
133	Granulocyte JAK2 (V617F) Mutation Status in Myeloid Neoplasms with Ringed Sideroblasts Blood, 2006, 108, 854-854.	1.4	1
134	Identification of Prognostic Markers by Gene Expression Profiling In Myelodysplastic Syndrome Hematopoietic Stem Cells. Blood, 2010, 116, 298-298.	1.4	1
135	Modeling Clonal Progression in SF3B1-Mutant Myelodysplastic Syndrome. Blood, 2021, 138, 149-149.	1.4	1
136	Introduction. Seminars in Hematology, 2017, 54, 129-132.	3.4	0
137	Flow Cytometry Evaluation of Erythroid Dysplasia in Patients with Myelodysplastic Syndrome Blood, 2004, 104, 2365-2365.	1.4	0
138	Reduced Intensity Conditioning with Thiotepa and Fludarabine for Allogeneic Transplantation: Evidence for Low Toxicity and Long-Lasting Disease Control in MDS with Low/Intermediate-1 IPSS Score and in AML from MDS in Complete Remission Blood, 2008, 112, 3285-3285.	1.4	0
139	The Effects of Mitochondrial Ferritin Expression in Normal and Sideroblastic Erythropoiesis Blood, 2009, 114, 736-736.	1.4	0
140	Identification of Gene Expression Based Prognostic Markers in the Hematopoietic Stem Cells of Patients with Myelodysplastic Syndromes. Blood, 2012, 120, 3857-3857.	1.4	0
141	Genetic Determinants Of Disease Phenotype In Myelodysplastic Syndromes. Blood, 2013, 122, 2755-2755.	1.4	0
142	Whole Transcriptome Analysis Identifies Distinct Gene Expression Profiles between SF3B1mut and SF3B1 wt Myelodysplastic Syndrome with Ring Sideroblasts. Blood, 2021, 138, 3695-3695.	1.4	0
143	Novel homeobox gene recombination in T-cell acute lymphoblastic leukemia. Haematologica, 2006, 91, 290A.	3.5	Ο
144	Haematological malignancies in relatives of patients affected with myeloproliferative neoplasms. EJHaem, 0, , .	1.0	0