Stefano Lorito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3093517/publications.pdf

Version: 2024-02-01

59 papers

1,953 citations

236925 25 h-index 265206 42 g-index

86 all docs 86 docs citations

86 times ranked 1635 citing authors

#	Article	IF	CITATIONS
1	Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nature Geoscience, 2011, 4, 173-177.	12.9	256
2	Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Reviews of Geophysics, 2017, 55, 1158-1198.	23.0	170
3	Earthquake $\hat{a} \in g$ enerated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy. Journal of Geophysical Research, 2008, 113, .	3.3	105
4	Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophysical Journal International, 2015, 200, 574-588.	2.4	90
5	Untangling the Palaeocene climatic rhythm: an astronomically calibrated Early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain). Earth and Planetary Science Letters, 2003, 216, 483-500.	4.4	80
6	Rupture Process of the 2004 Sumatra-Andaman Earthquake from Tsunami Waveform Inversion. Bulletin of the Seismological Society of America, 2007, 97, S223-S231.	2.3	77
7	Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data. Scientific Reports, 2014, 4, 5631.	3.3	72
8	Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). Geophysical Journal International, 2016, 205, 1780-1803.	2.4	72
9	A global probabilistic tsunami hazard assessment from earthquake sources. Geological Society Special Publication, 2018, 456, 219-244.	1.3	72
10	Clues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake. Scientific Reports, 2012, 2, 385.	3.3	70
11	Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Frontiers in Earth Science, 2021, 9, .	1.8	65
12	The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18). Frontiers in Earth Science, 2021, 8, .	1.8	50
13	Integrating geologic fault data into tsunami hazard studies. Natural Hazards and Earth System Sciences, 2013, 13, 1025-1050.	3.6	48
14	Source process of the September 12, 2007, M $<$ sub $>$ W $<$ /sub $>$ 8.4 southern Sumatra earthquake from tsunami tide gauge record inversion. Geophysical Research Letters, 2008, 35, .	4.0	37
15	Probabilistic tsunami forecasting for early warning. Nature Communications, 2021, 12, 5677.	12.8	37
16	Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes. Scientific Reports, 2016, 6, 35007.	3.3	36
17	A New Approximate Method for Quantifying Tsunami Maximum Inundation Height Probability. Pure and Applied Geophysics, 2019, 176, 3227-3246.	1.9	34
18	From regional to local SPTHA: efficient computation of probabilistic tsunami inundation maps addressing near-field sources. Natural Hazards and Earth System Sciences, 2019, 19, 455-469.	3.6	34

#	Article	IF	CITATIONS
19	Scenarios of Earthquake-Generated Tsunamis for the Italian Coast of the Adriatic Sea. Pure and Applied Geophysics, 2008, 165, 2117-2142.	1.9	30
20	Slip distribution of the 2003 Tokachiâ€oki <i>M</i> _{<i>w</i>} 8.1 earthquake from joint inversion of tsunami waveforms and geodetic data. Journal of Geophysical Research, 2010, 115, .	3.3	30
21	Kinematics and source zone properties of the 2004 Sumatraâ€Andaman earthquake and tsunami: Nonlinear joint inversion of tide gauge, satellite altimetry, and GPS data. Journal of Geophysical Research, 2010, 115, .	3.3	30
22	Effect of Shallow Slip Amplification Uncertainty on Probabilistic Tsunami Hazard Analysis in Subduction Zones: Use of Long-Term Balanced Stochastic Slip Models. Pure and Applied Geophysics, 2020, 177, 1497-1520.	1.9	29
23	Optimal time alignment of tideâ€gauge tsunami waveforms in nonlinear inversions: Application to the 2015 Illapel (Chile) earthquake. Geophysical Research Letters, 2016, 43, 11,226.	4.0	28
24	Tsunamigenic earthquake simulations using experimentally derived friction laws. Earth and Planetary Science Letters, 2018, 486, 155-165.	4.4	28
25	Probabilistic Tsunami Hazard Analysis: High Performance Computing for Massive Scale Inundation Simulations. Frontiers in Earth Science, 2020, 8, .	1.8	28
26	Fast evaluation of tsunami scenarios: uncertainty assessment for a Mediterranean Sea database. Natural Hazards and Earth System Sciences, 2016, 16, 2593-2602.	3.6	26
27	Tsunamigenic Major and Great Earthquakes (2004–2013): Source Processes Inverted from Seismic, Geodetic, and Sea-Level Data. , 2015, , 1-52.		21
28	The 2018 Mw 6.8 Zakynthos (Ionian Sea, Greece) earthquake: seismic source and local tsunami characterization. Geophysical Journal International, 2020, 221, 1043-1054.	2.4	20
29	Tsunami risk communication and management: Contemporary gaps and challenges. International Journal of Disaster Risk Reduction, 2022, 70, 102771.	3.9	19
30	Probabilistic hazard analysis for tsunamis generated by subaqueous volcanic explosions in the Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research, 2019, 379, 106-116.	2.1	18
31	From Seismic Monitoring to Tsunami Warning in the Mediterranean Sea. Seismological Research Letters, 2021, 92, 1796-1816.	1.9	17
32	Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. Future Generation Computer Systems, 2022, 134, 414-429.	7. 5	17
33	Urgent Tsunami Computing. , 2019, , .		16
34	Tsunami risk management for crustal earthquakes and non-seismic sources in Italy. Rivista Del Nuovo Cimento, 2021, 44, 69-144.	5.7	16
35	Testing Tsunami Inundation Maps for Evacuation Planning in Italy. Frontiers in Earth Science, 2021, 9, .	1.8	16
36	Appraising the Early-est earthquake monitoring system for tsunami alerting at the Italian Candidate Tsunami Service Provider. Natural Hazards and Earth System Sciences, 2015, 15, 2019-2036.	3.6	16

#	Article	IF	CITATIONS
37	Tsunami Source of the 2021 <i>M</i> _W 8.1 Raoul Island Earthquake From DART and Tideâ€Gauge Data Inversion. Geophysical Research Letters, 2021, 48, e2021GL094449.	4.0	14
38	Rupture Process of the 18 April 1906 California Earthquake from Near-Field Tsunami Waveform Inversion. Bulletin of the Seismological Society of America, 2008, 98, 832-845.	2.3	13
39	Source of the 6 February 2013 <i>M</i> _w = 8.0 Santa Cruz Islands Tsunami. Natural Hazards and Earth System Sciences, 2015, 15, 1371-1379.	3.6	13
40	Wave Interaction of Reverseâ€Fault Rupture With Free Surface: Numerical Analysis of the Dynamic Effects and Fault Opening Induced by Symmetry Breaking. Journal of Geophysical Research: Solid Earth, 2019, 124, 1743-1758.	3.4	10
41	Importance of earthquake rupture geometry on tsunami modelling: the Calabrian Arc subduction interface (Italy) case study. Geophysical Journal International, 2020, 223, 1805-1819.	2.4	10
42	The Sensitivity of Tsunami Impact to Earthquake Source Parameters and Manning Friction in High-Resolution Inundation Simulations. Frontiers in Earth Science, 2022, 9, .	1.8	10
43	Stochastic resonance in a bistable geodynamo model. Astronomische Nachrichten, 2005, 326, 227-230.	1.2	9
44	Benchmarking the Optimal Time Alignment of Tsunami Waveforms in Nonlinear Joint Inversions for the Mw 8.8 2010 Maule (Chile) Earthquake. Frontiers in Earth Science, 2020, 8, .	1.8	7
45	Fifteen Years of (Major to Great) Tsunamigenic Earthquakes. , 2020, , .		7
46	The Mediterranean Sea we want. Ocean and Coastal Research, 2021, 69, .	0.6	5
47	Global Dissipation Models for Simulating Tsunamis at Far-Field Coasts up to 60 hours Post-Earthquake: Multi-Site Tests in Australia. Frontiers in Earth Science, 2020, 8, .	1.8	4
48	Tsunami hazard, warning, and risk reduction in Italy and the Mediterranean Sea: state of the art, gaps, and future solutions. Turkish Journal of Earth Sciences, 2021, 30, 882-897.	1.0	3
49	Editorial: From Tsunami Science to Hazard and Risk Assessment: Methods and Models. Frontiers in Earth Science, 2021, 9, .	1.8	3
50	Sensitivity of Tsunami Scenarios to Complex Fault Geometry and Heterogeneous Slip Distribution: Caseâ€studies for SW Iberia and NW Morocco. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022127.	3.4	3
51	Characterization of fault plane and coseismic slip for the 2 May 2020, & amp;lt;i>M _w 6.6 Cretan Passage earthquake from tide gauge tsunami data and moment tensor solutions. Natural Hazards and Earth System Sciences. 2021, 21, 3713-3730.	3.6	3
52	Tsunamis: Bayesian Probabilistic Analysis. , 2017, , 1-25.		2
53	Towards the new Thematic Core Service Tsunami within the EPOS Research Infrastructure. Annals of Geophysics, 2022, 65, DM215.	1.0	2
54	Tsunamis: Bayesian Probabilistic Analysis. , 2022, , 91-115.		1

STEFANO LORITO

#	Article	lF	CITATIONS
55	Wavelet analysis on paleomagnetic (and computer simulated) VGP time series. Annals of Geophysics, 2009, 46, .	1.0	1
56	Wavelet analysis at orbital time scales in Cretaceous paleomagnetic and lithological data series. Physics and Chemistry of the Earth, 2003, 28, 751-757.	2.9	0
57	Tsunamigenic Major and Great Earthquakes (2004–2013): Source Processes Inverted from Seismic, Geodetic, and Sea-Level Data. , 2022, , 247-298.		O
58	Scenarios of Earthquake-Generated Tsunamis for the Italian Coast of the Adriatic Sea. , 2008, , 2117-2142.		0
59	Tsunamis: Bayesian Probabilistic Analysis. , 2019, , 1-25.		0