Joanne M Hildebrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3092541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rare catastrophes and evolutionary legacies: human germline gene variants in <i>MLKL</i> and the necroptosis signalling pathway. Biochemical Society Transactions, 2022, 50, 529-539.	3.4	5
2	Membrane permeabilization is mediated by distinct epitopes in mouse and human orthologs of the necroptosis effector, MLKL. Cell Death and Differentiation, 2022, 29, 1804-1815.	11.2	22
3	Necroptotic movers and shakers: cell types, inflammatory drivers and diseases. Current Opinion in Immunology, 2021, 68, 83-97.	5.5	13
4	The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis. Cell Death and Disease, 2021, 12, 133.	6.3	8
5	Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling. Science Signaling, 2021, 14, .	3.6	53
6	A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death and Differentiation, 2021, 28, 2126-2144.	11.2	37
7	A family harboring an MLKL loss of function variant implicates impaired necroptosis in diabetes. Cell Death and Disease, 2021, 12, 345.	6.3	26
8	Conformational interconversion of MLKL and disengagement from RIPK3 precede cell death by necroptosis. Nature Communications, 2021, 12, 2211.	12.8	56
9	The Role of the Key Effector of Necroptotic Cell Death, MLKL, in Mouse Models of Disease. Biomolecules, 2021, 11, 803.	4.0	14
10	Add necroptosis to your asthma action plan. Immunology and Cell Biology, 2021, 99, 800-802.	2.3	1
11	Oligomerizationâ€driven MLKL ubiquitylation antagonizes necroptosis. EMBO Journal, 2021, 40, e103718.	7.8	39
12	Potent Inhibition of Necroptosis by Simultaneously Targeting Multiple Effectors of the Pathway. ACS Chemical Biology, 2020, 15, 2702-2713.	3.4	22
13	MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nature Communications, 2020, 11, 3151.	12.8	194
14	A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nature Communications, 2020, 11, 3150.	12.8	75
15	Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8468-8475.	7.1	64
16	Addendum: A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nature Communications, 2019, 10, 1923.	12.8	2
17	Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted. Cell Death and Differentiation, 2018, 25, 951-965.	11.2	72
18	A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nature Communications, 2018, 9, 4457.	12.8	65

JOANNE M HILDEBRAND

#	Article	IF	CITATIONS
19	Methods for Studying TNF-Mediated Necroptosis in Cultured Cells. Methods in Molecular Biology, 2018, 1857, 53-61.	0.9	6
20	Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nature Communications, 2018, 9, 2422.	12.8	154
21	Combination of IAP antagonist and IFNÎ ³ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	11.2	43
22	EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nature Microbiology, 2017, 2, 16258.	13.3	141
23	Insane in the membrane: a structural perspective of MLKL function in necroptosis. Immunology and Cell Biology, 2017, 95, 152-159.	2.3	67
24	Synaptic Zn ² ⁺ and febrile seizure susceptibility. British Journal of Pharmacology, 2017, 174, 119-125.	5.4	18
25	The Highway to Hell: A RIP Kinase-Directed Shortcut to Inflammatory Cytokine Production. Immunity, 2016, 45, 1-3.	14.3	20
26	Nuclear TRAF3 is a negative regulator of CREB in B cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1032-1037.	7.1	44
27	Evolutionary divergence of the necroptosis effector MLKL. Cell Death and Differentiation, 2016, 23, 1185-1197.	11.2	93
28	HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death and Disease, 2016, 7, e2051-e2051.	6.3	123
29	Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochemical Journal, 2015, 471, 255-265.	3.7	91
30	Flicking the molecular switch underlying MLKL-mediated necroptosis. Molecular and Cellular Oncology, 2015, 2, e985550.	0.7	3
31	A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nature Communications, 2015, 6, 6442.	12.8	112
32	Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochemical Journal, 2014, 457, 369-377.	3.7	92
33	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	27.8	23
34	Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15072-15077.	7.1	484
35	The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity, 2013, 39, 443-453.	14.3	958
36	A Complex Relationship between TRAF3 and Non-Canonical NF-κB2 Activation in B Lymphocytes. Frontiers in Immunology, 2013, 4, 477.	4.8	31

JOANNE M HILDEBRAND

#	Article	IF	CITATIONS
37	Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunological Reviews, 2011, 244, 55-74.	6.0	102
38	A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling. Journal of Experimental Medicine, 2010, 207, 2569-2579.	8.5	96
39	The Transmembrane Segment of Tom20 Is Recognized by Mim1 for Docking to the Mitochondrial TOM Complex. Journal of Molecular Biology, 2008, 376, 694-704.	4.2	88
40	Domain Stealing by Receptors in a Protein Transport Complex. Molecular Biology and Evolution, 2007, 24, 1909-1911.	8.9	12
41	Convergent Evolution of Receptors for Protein Import into Mitochondria. Current Biology, 2006, 16, 221-229.	3.9	118
42	Protein import into mitochondria: origins and functions today (Review). Molecular Membrane Biology, 2005, 22, 87-100.	2.0	76
43	Patterns that Define the Four Domains Conserved in Known and Novel Isoforms of the Protein Import Receptor Tom20. Journal of Molecular Biology, 2005, 347, 81-93.	4.2	53
44	Environmental stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Letters, 2003, 547, 125-130.	2.8	47