Anna Baccei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3092113/publications.pdf Version: 2024-02-01

ANNA BACCEL

#	Article	IF	CITATIONS
1	Reprogramming progressive cells display low CAG promoter activity. Stem Cells, 2021, 39, 43-54.	3.2	3
2	Epor Stimulates Rapid Cycling and Larger Red Cells during Mouse and Human Erythropoiesis. Blood, 2021, 138, 852-852.	1.4	0
3	Reprogramming progressive cells display low CAG promoter activity. Stem Cells, 2021, 39, 43-54.	3.2	11
4	EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nature Communications, 2021, 12, 7334.	12.8	18
5	Resolving Cell Cycle Speed in One Snapshot with a Live-Cell Fluorescent Reporter. Cell Reports, 2020, 31, 107804.	6.4	17
6	YAP Non-cell-autonomously Promotes Pluripotency Induction in Mouse Cells. Stem Cell Reports, 2020, 14, 730-743.	4.8	19
7	The palette of techniques for cell cycle analysis. FEBS Letters, 2020, 594, 2084-2098.	2.8	24
8	Novel Fluorescent Timer Tool Enables Characterization of Erythropoietic Differentiation Based on Differential Cell Cycling Speeds. Blood, 2020, 136, 27-28.	1.4	0
9	Cell cycle dynamics in the reprogramming of cellular identity. FEBS Letters, 2019, 593, 2840-2852.	2.8	24
10	MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications, 2019, 10, 1695.	12.8	31
11	MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nature Communications, 2019, 10, 5767.	12.8	41
12	Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm. Stem Cell Research, 2018, 28, 48-55.	0.7	18
13	A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions. Nature Communications, 2016, 7, 11178.	12.8	19
14	Influence ofATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells. Stem Cells and Development, 2016, 25, 740-747.	2.1	9
15	Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications, 2015, 6, 8715.	12.8	571
16	Multi-Scale Imaging and Informatics Pipeline for In Situ Pluripotent Stem Cell Analysis. PLoS ONE, 2014, 9, e116037.	2.5	7
17	The Distribution of Genomic Variations in Human iPSCs Is Related to Replication-Timing Reorganization during Reprogramming. Cell Reports, 2014, 7, 70-78.	6.4	24
18	Induced Pluripotent Stem Cells with a Mitochondrial DNA Deletion. Stem Cells, 2013, 31, 1287-1297.	3.2	92