Curt D Sigmund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3091007/publications.pdf

Version: 2024-02-01

332 papers 16,320 citations

13068 68 h-index 22102 113 g-index

335 all docs 335
docs citations

times ranked

335

15810 citing authors

#	Article	IF	CITATIONS
1	Comorbidities Caused by a Corrupt Cullin 3: Lessons Learned From Bedside to Bench. Hypertension, 2022, 79, 76-78.	1.3	O
2	Methods for the Comprehensive in vivo Analysis of Energy Flux, Fluid Homeostasis, Blood Pressure, and Ventilatory Function in Rodents. Frontiers in Physiology, 2022, 13, 855054.	1.3	15
3	RhoBTB1 reverses established arterial stiffness in angiotensin II–induced hypertension by promoting actin depolymerization. JCI Insight, 2022, 7, .	2.3	8
4	Cardiometabolic effects of DOCA-salt in male C57BL/6J mice are variably dependent on sodium and nonsodium components of diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R467-R485.	0.9	7
5	Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. Function, 2022, 3, zqac017.	1.1	6
6	Melanocortin MC ₄ R receptor is required for energy expenditure but not blood pressure effects of angiotensin II within the mouse brain. Physiological Genomics, 2022, 54, 196-205.	1.0	2
7	Deletion of Prorenin Receptor in the Rostral Ventrolateral Medulla Results in Biphasic and Sexâ€Dependent Pressor Responses in Deoxycorticosterone Acetateâ€salt Hypertension. FASEB Journal, 2022, 36, .	0.2	O
8	Gq Signaling in the Placental Syncytiotrophoblast Layer During Preeclampsia. FASEB Journal, 2022, 36, .	0.2	0
9	Role of βâ€Arrestin2 as a Regulator of Fluid Homeostasis and Blood Pressure. FASEB Journal, 2022, 36, .	0.2	O
10	Altered ERKâ€mediated control of AgRP and metabolic rate during obesity. FASEB Journal, 2022, 36, .	0.2	0
11	Chronic intracerebroventricular infusion of angiotensin II causes dose- and sex-dependent effects on intake behaviors and energy homeostasis in C57BL/6J mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R410-R421.	0.9	4
12	Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovascular Research, 2021, 117, 308-319.	1.8	20
13	β-Arrestin–Biased Agonist Targeting the Brain AT ₁ R (Angiotensin II Type 1 Receptor) Increases Aversion to Saline and Lowers Blood Pressure in Deoxycorticosterone Acetate–Salt Hypertension. Hypertension, 2021, 77, 420-431.	1.3	14
14	Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circulation Research, 2021, 128, 1021-1039.	2.0	26
15	EP3 (E-Prostanoid 3) Receptor Mediates Impaired Vasodilation in a Mouse Model of Salt-Sensitive Hypertension. Hypertension, 2021, 77, 1399-1411.	1.3	14
16	Recent Advances in Hypertension. Hypertension, 2021, 77, 1061-1068.	1.3	16
17	Team Science: American Heart Association's Hypertension Strategically Focused Research Network Experience. Hypertension, 2021, 77, 1857-1866.	1.3	О
18	Studies of salt and stress sensitivity on arterial pressure in renin-b deficient mice. PLoS ONE, 2021, 16, e0250807.	1.1	2

#	Article	IF	Citations
19	Under Pressure: A Baroreceptor Mechanism in the Renal Renin Cell Controlling Renin. Circulation Research, 2021, 129, 277-279.	2.0	1
20	PPARÎ ³ and RhoBTB1 in hypertension. Current Opinion in Nephrology and Hypertension, 2020, 29, 161-170.	1.0	16
21	Reduced mRNA Expression of RGS2 (Regulator of G Protein Signaling-2) in the Placenta Is Associated With Human Preeclampsia and Sufficient to Cause Features of the Disorder in Mice. Hypertension, 2020, 75, 569-579.	1.3	24
22	Cullin-3: Renal and Vascular Mechanisms Regulating Blood Pressure. Current Hypertension Reports, 2020, 22, 61.	1.5	8
23	Beat-to-Beat Blood Pressure Variability in the First Trimester Is Associated With the Development of Preeclampsia in a Prospective Cohort. Hypertension, 2020, 76, 1800-1807.	1.3	11
24	Single-Nucleus RNA Sequencing of the Hypothalamic Arcuate Nucleus of C57BL/6J Mice After Prolonged Diet-Induced Obesity. Hypertension, 2020, 76, 589-597.	1.3	23
25	Exploration of cardiometabolic and developmental significance of angiotensinogen expression by cells expressing the leptin receptor or agouti-related peptide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R855-R869.	0.9	9
26	Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension. Hypertension, 2020, 75, 902-917.	1.3	24
27	A colorful view of the brain renin–angiotensin system. Hypertension Research, 2020, 43, 357-359.	1.5	7
28	The Renin-Angiotensin System in the Central Nervous System and Its Role in Blood Pressure Regulation. Current Hypertension Reports, 2020, 22, 7.	1.5	60
29	Increased Susceptibility of Mice Lacking Renin-b to Angiotensin Il–Induced Organ Damage. Hypertension, 2020, 76, 468-477.	1.3	8
30	Prorenin Induces Intracellular Signaling And Reactive Oxygen Species In The Brainstem. FASEB Journal, 2020, 34, 1-1.	0.2	0
31	Common Laboratory Chow Diets Differentially Affect Energy Homeostasis and Modify Metabolic and Electrolyte Balance Effects of DOCAâ€salt in Wildtype Mice. FASEB Journal, 2020, 34, 1-1.	0.2	0
32	Endothelial Dysfunction Induced by Mitochondrial Uncoupling is prevented by Retinol Binding Protein 7, a PPARÎ ³ Target Gene. FASEB Journal, 2020, 34, 1-1.	0.2	0
33	Susceptibility of Mice Lacking Reninâ€b to Chronic Angiotensin II Infusion. FASEB Journal, 2020, 34, 1-1.	0.2	0
34	The Role of Vascular Smooth Muscle RhoBTB1 in Hypertension. FASEB Journal, 2020, 34, 1-1.	0.2	0
35	CREB and ERK Activation by Leptin and Angiotensin in the GT1â€7 Cell Model by Capillary Electrophoresisâ€Based Western Blotting. FASEB Journal, 2020, 34, 1-1.	0.2	0
36	105: Regulatory dendritic cell treatment prevents the development of vasopressin-induced preeclampsia in mice. American Journal of Obstetrics and Gynecology, 2019, 220, S84-S85.	0.7	0

#	Article	IF	Citations
37	Cul3 regulates cyclin E1 protein abundance via a degron located within the N-terminal region of cyclin E. Journal of Cell Science, 2019, 132, .	1.2	10
38	Endothelial PPARγ (Peroxisome Proliferator–Activated Receptor-γ) Protects From Angiotensin Il–Induced Endothelial Dysfunction in Adult Offspring Born From Pregnancies Complicated by Hypertension. Hypertension, 2019, 74, 173-183.	1.3	18
39	Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension. JCI Insight, 2019, 4, .	2.3	24
40	RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. Journal of Clinical Investigation, 2019, 129, 2318-2332.	3.9	32
41	PPARÎ ³ Target Gene Retinol Binding Protein 7 (RBP7) Protects Against Endothelial Dysfunction Induced by Mitochondrial Uncoupling. FASEB Journal, 2019, 33, 527.14.	0.2	O
42	Susceptibility of Mice Lacking Reninâ€b to Chronic Angiotensin II Infusion. FASEB Journal, 2019, 33, 835.14.	0.2	O
43	Elevated vasopressin in pregnant mice induces T-helper subset alterations consistent with human preeclampsia. Clinical Science, 2018, 132, 419-436.	1.8	39
44	Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight, 2018, 3, .	2.3	55
45	Revised guidelines to enhance the rigor and reproducibility of research published in American Physiological Society journals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1251-R1253.	0.9	21
46	Interference With Endothelial PPAR (Peroxisome Proliferator–Activated Receptor)-γ Causes Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System Activation. Hypertension, 2018, 72, 1227-1235.	1.3	17
47	Angiotensin AT _{1A} receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R770-R780.	0.9	29
48	Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. American Journal of Physiology - Renal Physiology, 2018, 315, F1006-F1018.	1.3	18
49	Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiological Reviews, 2018, 98, 1627-1738.	13.1	673
50	Endothelial PPARγ (Peroxisome Proliferator–Activated Receptor-γ) Is Essential for Preventing Endothelial Dysfunction With Aging. Hypertension, 2018, 72, 227-234.	1.3	31
51	Smooth Muscle PPARγ Mutation Causes Impaired Renal Blood Flow and Saltâ€Sensitive Hypertension. FASEB Journal, 2018, 32, .	0.2	0
52	Microarray Analysis of Hypertension. Methods in Molecular Biology, 2017, 1527, 41-52.	0.4	5
53	No Brain Renin–Angiotensin System. Hypertension, 2017, 69, 1007-1010.	1.3	28
54	Hypertension-Causing Mutation in Peroxisome Proliferator–Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle. Hypertension, 2017, 70, 174-182.	1.3	25

#	Article	IF	CITATIONS
55	Evidence for intraventricular secretion of angiotensinogen and angiotensin by the subfornical organ using transgenic mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R973-R981.	0.9	11
56	How Is the Brain Renin–Angiotensin System Regulated?. Hypertension, 2017, 70, 10-18.	1.3	56
57	Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiological Genomics, 2017, 49, 722-732.	1.0	20
58	PPAR \hat{I}^3 and retinol binding protein 7 form a regulatory hub promoting antioxidant properties of the endothelium. Physiological Genomics, 2017, 49, 653-658.	1.0	8
59	Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension, 2017, 70, 990-997.	1.3	18
60	Genetic Interference With Endothelial PPAR-γ (Peroxisome Proliferator–Activated Receptor-γ) Augments Effects of Angiotensin II While Impairing Responses to Angiotensin 1–7. Hypertension, 2017, 70, 559-565.	1.3	16
61	Overexpression of the Neuronal Human (Pro)renin Receptor Mediates Angiotensin II-Independent Blood Pressure Regulation in the Central Nervous System. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 314, H580-H592.	1.5	11
62	Retinol-binding protein 7 is an endothelium-specific PPAR $\hat{1}^3$ cofactor mediating an antioxidant response through adiponectin. JCl Insight, 2017, 2, e91738.	2.3	24
63	Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects. JCI Insight, 2017, 2, .	2.3	41
64	Collecting Duct Renin Does Not Mediate DOCA-Salt Hypertension or Renal Injury. PLoS ONE, 2016, 11, e0159872.	1.1	12
65	Effect of selective expression of dominant-negative PPAR \hat{I}^3 in pro-opiomelanocortin neurons on the control of energy balance. Physiological Genomics, 2016, 48, 491-501.	1.0	13
66	Interference with PPAR \hat{I}^3 in endothelium accelerates angiotensin II-induced endothelial dysfunction. Physiological Genomics, 2016, 48, 124-134.	1.0	32
67	Introduction to the American Heart Association's Hypertension Strategically Focused Research Network. Hypertension, 2016, 67, 674-680.	1.3	10
68	Nervous System Expression of PPARÎ ³ and Mutant PPARÎ ³ Has Profound Effects on Metabolic Regulation and Brain Development. Endocrinology, 2016, 157, 4266-4275.	1.4	14
69	Role of CaMKII in Ang-Il-dependent small artery remodeling. Vascular Pharmacology, 2016, 87, 172-179.	1.0	4
70	Suppression of Resting Metabolism by the Angiotensin AT 2 Receptor. Cell Reports, 2016, 16, 1548-1560.	2.9	36
71	mTORC1 Signaling Contributes to Drinking But Not Blood Pressure Responses to Brain Angiotensin II. Endocrinology, 2016, 157, 3140-3148.	1.4	10
72	Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension, 2016, 68, 1385-1392.	1.3	43

#	Article	IF	Citations
73	Hypertension. Hypertension, 2016, 67, 493-495.	1.3	3
74	Endothelial PPAR- \hat{l}^3 provides vascular protection from IL- $1\hat{l}^2$ -induced oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H39-H48.	1.5	61
75	Fibrotic Aortic Valve Stenosis in Hypercholesterolemic/Hypertensive Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 466-474.	1.1	23
76	Estrogen Receptor \hat{l}_{\pm} Is Required for Maintaining Baseline Renin Expression. Hypertension, 2016, 67, 992-999.	1.3	17
77	Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator–Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate–Salt Hypertension. Hypertension, 2016, 67, 214-222.	1.3	24
78	Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight, 2016, 1, e91015.	2.3	53
79	Abstract P323: Arginine Vasopressin and Indoleamine 2,3 Dioxygenase: The Early Immunovascular Interface in Preeclampsia. Hypertension, 2016, 68, .	1.3	0
80	Pregnant mice lacking indoleamine 2,3-dioxygenase exhibit preeclampsia phenotypes. Physiological Reports, 2015, 3, e12257.	0.7	65
81	Molecular mechanisms regulating vascular tone by peroxisome proliferator activated receptor gamma. Current Opinion in Nephrology and Hypertension, 2015, 24, 123-130.	1.0	22
82	Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R238-R249.	0.9	76
83	Calcium/Calmodulinâ€Dependent Kinase II Inhibition in Smooth Muscle Reduces Angiotensin Il–Induced Hypertension by Controlling Aortic Remodeling and Baroreceptor Function. Journal of the American Heart Association, 2015, 4, e001949.	1.6	35
84	Endothelial PPAR-Î ³ Protects Against Vascular Thrombosis by Downregulating P-Selectin Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 838-844.	1.1	33
85	Brain Endoplasmic Reticulum Stress Mechanistically Distinguishes the Saline-Intake and Hypertensive Response to Deoxycorticosterone Acetate–Salt. Hypertension, 2015, 65, 1341-1348.	1.3	15
86	The earliest metanephric arteriolar progenitors and their role in kidney vascular development. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R138-R149.	0.9	87
87	Vasopressin: the missing link for preeclampsia?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1062-R1064.	0.9	34
88	Smooth Muscle Peroxisome Proliferator–Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo. Hypertension, 2015, 66, 211-220.	1.3	28
89	Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors. Journal of Biological Chemistry, 2015, 290, 19208-19217.	1.6	54
90	PPARÎ ³ Regulation in Hypertension and Metabolic Syndrome. Current Hypertension Reports, 2015, 17, 89.	1.5	27

#	Article	IF	Citations
91	Vascular versus tubular renin: role in kidney development. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R650-R657.	0.9	29
92	Genetic Interference With Peroxisome Proliferator–Activated Receptor γ in Smooth Muscle Enhances Myogenic Tone in the Cerebrovasculature via A Rho Kinase–Dependent Mechanism. Hypertension, 2015, 65, 345-351.	1.3	21
93	Role of Vascular Smooth Muscle PPAR \hat{I}^3 in Regulating AT1 Receptor Signaling and Angiotensin II-Dependent Hypertension. PLoS ONE, 2014, 9, e103786.	1.1	10
94	Activity of Protein Kinase C- \hat{l} ± Within the Subfornical Organ Is Necessary for Fluid Intake in Response to Brain Angiotensin. Hypertension, 2014, 64, 141-148.	1.3	20
95	Interference With Peroxisome Proliferator-Activated Receptor- \hat{l}^3 in Vascular Smooth Muscle Causes Baroreflex Impairment and Autonomic Dysfunction. Hypertension, 2014, 64, 590-596.	1.3	13
96	Role of Peroxisome Proliferator–Activated Receptor-γ in Vascular Muscle in the Cerebral Circulation. Hypertension, 2014, 64, 1088-1093.	1.3	26
97	Another Reason to Eat Your Greens. Hypertension, 2014, 64, 1182-1183.	1.3	4
98	Collecting duct-specific knockout of renin attenuates angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2014, 307, F931-F938.	1.3	55
99	Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R376-R386.	0.9	20
100	Metabolic rate regulation by the renin–angiotensin system: brain vs. body. Pflugers Archiv European Journal of Physiology, 2013, 465, 167-175.	1.3	26
101	Differential Control of Calcium Homeostasis and Vascular Reactivity by Ca ²⁺ /Calmodulin-Dependent Kinase II. Hypertension, 2013, 62, 434-441.	1.3	31
102	Dominant negative PPARÎ ³ promotes atherosclerosis, vascular dysfunction, and hypertension through distinct effects in endothelium and vascular muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R690-R701.	0.9	35
103	Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R818-R828.	0.9	59
104	Allele-Specific Expression of Angiotensinogen in Human Subcutaneous Adipose Tissue. Hypertension, 2013, 62, 41-47.	1.3	12
105	A Clinical Link Between Peroxisome Proliferator-Activated Receptor γ and the Renin–Angiotensin System. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 676-678.	1.1	8
106	PPARÎ ³ . Circulation Research, 2013, 112, 411-414.	2.0	11
107	Pioglitazone Attenuates Valvular Calcification Induced by Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 523-532.	1.1	42
108	Angiotensin Type 1a Receptors in the Subfornical Organ Are Required for Deoxycorticosterone Acetate-Salt Hypertension. Hypertension, 2013, 61, 716-722.	1.3	56

#	Article	IF	CITATIONS
109	Regulation of adipose thermogenesis by Epidermal Growth Factor and angiotensin AT2 receptor activation. FASEB Journal, 2013, 27, 696.1.	0.2	O
110	Interference with PPARγ in endothelium accelerates angiotensin IIâ€mediated vascular dysfunction. FASEB Journal, 2013, 27, 901.7.	0.2	0
111	Deoxycorticosterone acetate (DOCA)â€salt exacerbates hypertension and vascular dysfunction in mice expressing dominant negative Peroxisome Proliferatorâ€Activated Receptorâ€gamma (PPARG) in smooth muscle. FASEB Journal, 2013, 27, 708.10.	0.2	0
112	Glycemic control by the brain reninâ€angiotensin system: Role for peripheral AT2 receptors. FASEB Journal, 2013, 27, 1120.2.	0.2	0
113	Production of angiotensin within the SFO is sufficient to increase ERK1/2 and CREB activity in the SFO and PVN. FASEB Journal, 2013, 27, 1165.11.	0.2	0
114	Genetic interference with peroxisome proliferatorâ€activated receptor γ (PPARγ) in smooth muscle enhances cerebrovascular myogenic tone via a rho kinaseâ€dependent mechanism. FASEB Journal, 2013, 27, 925.1.	0.2	0
115	A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H197-H206.	1.5	105
116	Peroxisome proliferator-activated receptor-Î ³ protects against vascular aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1184-R1190.	0.9	23
117	Divergent mechanism regulating fluid intake and metabolism by the brain renin-angiotensin system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R313-R320.	0.9	15
118	Regulation of renin expression by the orphan nuclear receptors Nr2f2 and Nr2f6. American Journal of Physiology - Renal Physiology, 2012, 302, F1025-F1033.	1.3	13
119	Gene Trapping Uncovers Sex-Specific Mechanisms for Upstream Stimulatory Factors 1 and 2 in Angiotensinogen Expression. Hypertension, 2012, 59, 1212-1219.	1.3	12
120	PPARÎ ³ Regulates Resistance Vessel Tone Through a Mechanism Involving RGS5-Mediated Control of Protein Kinase C and BKCa Channel Activity. Circulation Research, 2012, 111, 1446-1458.	2.0	56
121	A Second Chance for a PPARÎ ³ Targeted Therapy?. Circulation Research, 2012, 110, 8-11.	2.0	10
122	Cullin-3 Regulates Vascular Smooth Muscle Function and Arterial Blood Pressure via PPAR \hat{I}^3 and RhoA/Rho-Kinase. Cell Metabolism, 2012, 16, 462-472.	7.2	93
123	Coex-Rank: An approach incorporating co-expression information for combined analysis of microarray data. Journal of Integrative Bioinformatics, 2012, 9, 32-43.	1.0	1
124	Decreased expression of neuronal nitric oxide synthase in the nucleus tractus solitarii inhibits sympathetically mediated baroreflex responses in rat. Journal of Physiology, 2012, 590, 3545-3559.	1.3	11
125	Coex-Rank: An approach incorporating co-expression information for combined analysis of microarray data. Journal of Integrative Bioinformatics, 2012, 9, 208.	1.0	3
126	Endoplasmic Reticulum Stress in Cardiovascular and Metabolic Control during DOCAâ€Salt Treatment. FASEB Journal, 2012, 26, 703.22.	0.2	0

#	Article	IF	CITATIONS
127	Interference of peroxisome proliferatorâ€activated receptorâ€gamma (PPAG) in vascular muscle enhances myogenic tone in small resistance arteries via protein kinase C (PKC)â€induced inhibition of large conductance Ca2+â€activated K+ channel (BKCa) activity. FASEB Journal, 2012, 26, 1058.6.	0.2	0
128	CaMKII inhibition in vascular smooth muscle improves angiotensin II–hypertension. FASEB Journal, 2012, 26, lb599.	0.2	0
129	Inflaming Hypothalamic Neurons Raises Blood Pressure. Cell Metabolism, 2011, 14, 3-4.	7.2	11
130	Ablation of the Leptin Receptor in the Hypothalamic Arcuate Nucleus Abrogates Leptin-Induced Sympathetic Activation. Circulation Research, 2011, 108, 808-812.	2.0	128
131	Angiotensinergic Signaling in the Brain Mediates Metabolic Effects of Deoxycorticosterone (DOCA)-Salt in C57 Mice. Hypertension, 2011, 57, 600-607.	1.3	89
132	Cystic fibrosis transmembrane conductance regulator with a shortened R domain rescues the intestinal phenotype of $\langle i \rangle$ CFTR $\langle sup \rangle \hat{a}^2 / \hat{a}^2 \langle sup \rangle \langle i \rangle$ mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2921-2926.	3. 3	15
133	Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nature Medicine, 2011, 17, 1610-1618.	15.2	220
134	Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism. Physiological Genomics, 2011, 43, 286-294.	1.0	22
135	Renal proximal tubule angiotensin AT1A receptors regulate blood pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1067-R1077.	0.9	76
136	Brain targeted (Pro)renin receptor overâ€expression induces the development of hypertension via modulation of baroreflex sensitivity and renal sympathetic nerve activity in renin transgenic mice. FASEB Journal, 2011, 25, 1078.10.	0.2	0
137	Regulation of Renin Gene Expression by Oxidative Stress. FASEB Journal, 2011, 25, lb499.	0.2	0
138	Gene trapping uncovers genderâ€specific mechanisms for upstream stimulatory factors 1 and 2 in angiotensinogen expression. FASEB Journal, 2011, 25, lb507.	0.2	0
139	On stress and pressure. Nature, 2010, 468, 46-47.	13.7	9
140	Endothelial and Vascular Muscle PPARÎ ³ in Arterial Pressure Regulation. Hypertension, 2010, 55, 437-444.	1.3	38
141	Increased Renin Production in Mice With Deletion of Peroxisome Proliferator-Activated Receptor- \hat{l}^3 in Juxtaglomerular Cells. Hypertension, 2010, 55, 660-666.	1.3	25
142	Brain-Selective Overexpression of Human Angiotensin-Converting Enzyme Type 2 Attenuates Neurogenic Hypertension. Circulation Research, 2010, 106, 373-382.	2.0	168
143	The MicroRNA-Processing Enzyme Dicer Maintains Juxtaglomerular Cells. Journal of the American Society of Nephrology: JASN, 2010, 21, 460-467.	3.0	143
144	Does Peroxisome Proliferator-activated Receptor- \hat{l}^3 (PPAR \hat{l}^3) Protect from Hypertension Directly through Effects in the Vasculature?. Journal of Biological Chemistry, 2010, 285, 9311-9316.	1.6	58

#	Article	IF	CITATIONS
145	Bioinformatic Analysis of Gene Sets Regulated by Ligand-Activated and Dominant-Negative Peroxisome Proliferator–Activated Receptor γ in Mouse Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 518-525.	1.1	26
146	Cardiovascular Consequences of Genetic Variation at â^36/235 in Human Angiotensinogen Using "Humanized―Gene-Targeted Mice. Hypertension, 2010, 56, 981-987.	1.3	9
147	Twists and turns in the search for the elusive renin processing enzyme: focus on "Cathepsin B is not the processing enzyme for mouse prorenin†American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1209-R1211.	0.9	9
148	Team exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1-R1.	0.9	0
149	Transgenic mice expressing an intracellular fluorescent fusion of angiotensin II demonstrate renal thrombotic microangiopathy and elevated blood pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1807-H1818.	1.5	40
150	The Brain Renin-Angiotensin System Controls Divergent Efferent Mechanisms to Regulate Fluid and Energy Balance. Cell Metabolism, 2010, 12, 431-442.	7.2	140
151	Role of Angiotensin II Receptor (AT1aR) in Thick Ascending Limb of Henle's Loop and Distal Tubules. FASEB Journal, 2010, 24, 605.5.	0.2	0
152	Interference with Peroxisome Proliferator Activated Receptor Gamma (PPARG) in smooth muscle causes aortic dysfunction via a Rhoâ€kinaseâ€dependent mechanism. FASEB Journal, 2010, 24, 980.6.	0.2	0
153	Role of vascular muscle Peroxisome Proliferatorâ€Activated Receptorâ€gamma (PPAR gamma) in the regulation of resistance vessel tone. FASEB Journal, 2010, 24, 776.2.	0.2	0
154	Preservation of Intracellular Renin Expression Is Insufficient to Compensate for Genetic Loss of Secreted Renin. Hypertension, 2009, 54, 1240-1247.	1.3	34
155	Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1914-H1919.	1.5	102
156	Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1526-R1531.	0.9	39
157	<i>PPARγ differentially regulates energy substrate handling in brown vs. white adipose</i> : focus on â∈œThe PPARγ agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake†American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1325-R1326.	0.9	2
158	Hypothalamic ERK Mediates the Anorectic and Thermogenic Sympathetic Effects of Leptin. Diabetes, 2009, 58, 536-542.	0.3	169
159	Regulation of Renin Gene Expression by Oxidative Stress. Hypertension, 2009, 53, 1070-1076.	1.3	23
160	Characterization of transgenic mice with neuron-specific expression of soluble epoxide hydrolase. Brain Research, 2009, 1291, 60-72.	1.1	17
161	Genetic Disruption of Secreted Renin with Preservation of Intracellular Renin Causes Cardiovascular Dysregulation and Interfered Metabolism. FASEB Journal, 2009, 23, LB45.	0.2	0
162	Cardiac autonomic function in mice expressing dominantâ€negative mutation of PPARâ€gamma (PPARG) in vascular smooth muscle. FASEB Journal, 2009, 23, LB140.	0.2	0

#	Article	IF	Citations
163	From molecules to medicine: A future cure for preeclampsia?. Drug News and Perspectives, 2009, 22, 531.	1.9	14
164	Requirement of TCTG(G/C) Direct Repeats and Overlapping GATA Site for Maintaining the Cardiacâ€Specific Expression of <i>Cardiac troponin T</i> in Developing and Adult Mice. Anatomical Record, 2008, 291, 1574-1586.	0.8	6
165	Requirement of TCTG(G/C) Direct Repeats and Overlapping GATA Site for Maintaining the Cardiac-Specific Expression of Cardiac troponin Tin Developing and Adult Mice. Anatomical Record, 2008, 291, spc1-spc1.	0.8	0
166	Oxidative Stress through Activation of NAD(P)H Oxidase in Hypertensive Mice with Spontaneous Intracranial Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1175-1185.	2.4	32
167	Interference with PPARÎ ³ Function in Smooth Muscle Causes Vascular Dysfunction and Hypertension. Cell Metabolism, 2008, 7, 215-226.	7.2	153
168	Endothelium-Specific Interference With Peroxisome Proliferator Activated Receptor Gamma Causes Cerebral Vascular Dysfunction in Response to a High-Fat Diet. Circulation Research, 2008, 103, 654-661.	2.0	89
169	Upstream Stimulatory Factor Is Required for Human Angiotensinogen Expression and Differential Regulation by the Aâ° 20C Polymorphism. Circulation Research, 2008, 103, 940-947.	2.0	19
170	Interference With PPAR \hat{I}^3 Signaling Causes Cerebral Vascular Dysfunction, Hypertrophy, and Remodeling. Hypertension, 2008, 51, 867-871.	1.3	104
171	Id3, E47, and SREBP-1c. Circulation Research, 2008, 103, 565-567.	2.0	14
172	Dysregulated human renin expression in transgenic mice carrying truncated genomic constructs: evidence supporting the presence of insulators at the renin locus. American Journal of Physiology - Renal Physiology, 2008, 295, F642-F653.	1.3	4
173	AJP: Regulatory, Integrative and Comparative Physiology: 1 year later.…. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1007-R1008.	0.9	0
174	Chorionic enhancer is dispensable for regulated expression of the human renin gene. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R279-R287.	0.9	12
175	A growing chain of evidence linking genetic variation in angiotensinogen with essential hypertension: focus on â∈∞A haplotype of human angiotensinogen gene containing â^217A increases blood pressure in transgenic mice compared with â^217G,â€-by Jain et al American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2008, 295, R1846-R1848.	0.9	1
176	An androgen-inducible proximal tubule-specific Cre recombinase transgenic model. American Journal of Physiology - Renal Physiology, 2008, 294, F1481-F1486.	1.3	25
177	Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2. American Journal of Physiology - Renal Physiology, 2008, 295, F462-F470.	1.3	136
178	Germ line activation of the Tie2 and SMMHC promoters causes noncell-specific deletion of floxed alleles. Physiological Genomics, 2008, 35, 1-4.	1.0	59
179	An Intracellular Renin-Angiotensin System in Neurons: Fact, Hypothesis, or Fantasy. Physiology, 2008, 23, 187-193.	1.6	153
180	Role of Oxidative Stress and Angiotensin II in Cerebral Vascular Dysfunction with Aging. FASEB Journal, 2008, 22, 1151.21.	0.2	0

#	Article	IF	Citations
181	Regulation of Renin Gene Expression by Oxidative Stress. FASEB Journal, 2008, 22, 1160.6.	0.2	O
182	Vascular hypercontractility to endothelin 1 in mice lacking endothelial PPARG. FASEB Journal, 2008, 22, 968.12.	0.2	0
183	The â^'20 and â^'217 Promoter Variants Dominate Differential Angiotensinogen Haplotype Regulation in Angiotensinogen-Expressing Cells. Hypertension, 2007, 49, 631-639.	1.3	35
184	AJP: Regulatory, Integrative and Comparative Physiology: 2007 and beyond. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1-R2.	0.9	3
185	Kidney-specific enhancement of ANG II stimulates endogenous intrarenal angiotensinogen in gene-targeted mice. American Journal of Physiology - Renal Physiology, 2007, 293, F938-F945.	1.3	103
186	Functional Characterization of Polymorphisms in the Kidney Enhancer of the Human Renin Gene. Endocrinology, 2007, 148, 1424-1430.	1.4	21
187	To the Readers of Hypertension:. Hypertension, 2007, 49, 1195-1195.	1.3	0
188	Is Peroxisome Proliferator-Activated Receptor-γ a New "Pal―of Renin?. Hypertension, 2007, 50, 844-846.	1.3	12
189	Lethal Infection of K18- hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2007, 81, 813-821.	1.5	904
190	Wnt3a regulates Lef-1 expression during airway submucosal gland morphogenesis. Developmental Biology, 2007, 305, 90-102.	0.9	52
191	Local production of angiotensin II in the subfornical organ causes elevated drinking. Journal of Clinical Investigation, 2007, 117, 1088-1095.	3.9	129
192	Protective effect of PPAR \hat{I}^3 in the vascular wall: Insight from mice expressing the P465L dominant negative mutation in PPAR \hat{I}^3 . FASEB Journal, 2007, 21, A1200.	0.2	0
193	Renal Thrombotic Microangiopathy in a Genetic Model of Hypertension in Mice. Experimental Biology and Medicine, 2006, 231, 196-203.	1.1	10
194	Cerebral Vascular Effects of Angiotensin II: New Insights from Genetic Models. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 449-455.	2.4	88
195	RAS blockade decreases blood pressure and proteinuria in transgenic mice overexpressing rat angiotensinogen gene in the kidney. Kidney International, 2006, 69, 1016-1023.	2.6	118
196	Inactivation of NADPH oxidase organizer 1 Results in Severe Imbalance. Current Biology, 2006, 16, 208-213.	1.8	98
197	Interleukin- $1\hat{l}^2$ Attenuates Renin Gene Expression Via a Mitogen-Activated Protein Kinase Kinase-Extracellular Signal-Regulated Kinase and Signal Transducer and Activator of Transcription 3-Dependent Mechanism in As4.1 Cells. Endocrinology, 2006, 147, 6011-6018.	1.4	23
198	Mice heterozygous for \hat{l}^2 -ENaC deletion have defective potassium excretion. American Journal of Physiology - Renal Physiology, 2006, 291, F107-F115.	1.3	14

#	Article	IF	Citations
199	Angiotensinogen Modulates Renal Vasculature Growth. Hypertension, 2006, 47, 1067-1074.	1.3	14
200	Evidence Supporting a Functional Role for Intracellular Renin in the Brain. Hypertension, 2006, 47, 461-466.	1.3	69
201	Genetic Basis of Hypertension. Hypertension, 2006, 48, 14-20.	1.3	106
202	Genetic Ablation of Angiotensinogen in the Subfornical Organ of the Brain Prevents the Central Angiotensinergic Pressor Response. Circulation Research, 2006, 99, 1125-1131.	2.0	48
203	The Human Renin Kidney Enhancer Is Required to Maintain Base-line Renin Expression but Is Dispensable for Tissue-specific, Cell-specific, and Regulated Expression. Journal of Biological Chemistry, 2006, 281, 35296-35304.	1.6	33
204	Targeting Brain AT 1 Receptors By RNA Interference. Hypertension, 2006, 47, 145-146.	1.3	8
205	Pathophysiological mechanisms of obesity and hypertension in mouse models of Bardetâ€Biedl syndrome. FASEB Journal, 2006, 20, A1207.	0.2	0
206	Molecular evidence of tissue renin-angiotensin systems: A focus on the brain. Current Hypertension Reports, 2005, 7, 135-140.	1.5	41
207	Nuclear localization of angiotensinogen in astrocytes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R539-R546.	0.9	60
208	Glial-specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1763-R1769.	0.9	28
209	Mkks-null mice have a phenotype resembling Bardet–Biedl syndrome. Human Molecular Genetics, 2005, 14, 1109-1118.	1.4	181
210	Peroxisome Proliferator-Activated Receptor-?? and its Agonists in Hypertension and Atherosclerosis. American Journal of Cardiovascular Drugs, 2005, 5, 389-398.	1.0	17
211	Cerebral vascular effects of angiotensin II: New insights from genetic models. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S156-S156.	2.4	3
212	Spontaneous stroke in a genetic model of hypertension in mice. Stroke, 2005, 36, 1253-8.	1.0	56
213	Gene expression profiling of potential PPAR \hat{I}^3 target genes in mouse aorta. Physiological Genomics, 2004, 18, 33-42.	1.0	47
214	Differential expression of the closely linked KISS1, REN, and FLJ10761 genes in transgenic mice. Physiological Genomics, 2004, 17, 4-10.	1.0	9
215	Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model. Physiological Genomics, 2004, 16, 240-246.	1.0	73
216	ACE, ACE Inhibitors, and Other JNK. Circulation Research, 2004, 94, 1-3.	2.0	63

#	Article	IF	CITATIONS
217	Adjacent Expression of Renin and Angiotensinogen in the Rostral Ventrolateral Medulla Using a Dual-Reporter Transgenic Model. Hypertension, 2004, 43, 1116-1119.	1.3	74
218	PPARÎ ³ Agonist Rosiglitazone Improves Vascular Function and Lowers Blood Pressure in Hypertensive Transgenic Mice. Hypertension, 2004, 43, 661-666.	1.3	184
219	Structure of Cerebral Arterioles in Mice Deficient in Expression of the Gene for Endothelial Nitric Oxide Synthase. Circulation Research, 2004, 95, 822-829.	2.0	66
220	Ghrelin Inhibits Proinflammatory Responses and Nuclear Factor-l ^o B Activation in Human Endothelial Cells. Circulation, 2004, 109, 2221-2226.	1.6	459
221	Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3621-3626.	3.3	199
222	Angiotensin II–Induced Vascular Dysfunction Is Mediated by the AT 1A Receptor in Mice. Hypertension, 2004, 43, 1074-1079.	1.3	78
223	Ganglionic Action of Angiotensin Contributes to Sympathetic Activity in Renin-Angiotensinogen Transgenic Mice. Hypertension, 2004, 43, 312-316.	1.3	23
224	Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule. American Journal of Physiology - Renal Physiology, 2004, 286, F965-F971.	1.3	104
225	Transgenic mice for studies of the renin-angiotensin system in hypertension. Acta Physiologica Scandinavica, 2004, 181, 571-577.	2.3	26
226	Characterization of Lef-1 Promoter Segments that Facilitate Inductive Developmental Expression in Skin. Journal of Investigative Dermatology, 2004, 123, 264-274.	0.3	29
227	Cerebral Vascular Dysfunction Mediated by Superoxide in Hyperhomocysteinemic Mice. Stroke, 2004, 35, 1957-1962.	1.0	146
228	Expression of the Cytoplasmic Tail of LMP1 in Mice Induces Hyperactivation of B Lymphocytes and Disordered Lymphoid Architecture. Immunity, 2004, 21, 255-266.	6.6	55
229	Wnt-responsive element controls Lef-1 promoter expression during submucosal gland morphogenesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L752-L763.	1.3	34
230	Differential modulation of baroreflex control of heart rate by neuron- vs. glia-derived angiotensin II. Physiological Genomics, 2004, 20, 66-72.	1.0	34
231	Adipose depot-specific modulation of angiotensinogen gene expression in diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E891-E895.	1.8	103
232	Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. Journal of Clinical Investigation, 2004, 114, 652-658.	3.9	162
233	Minireview: Overview of the Renin-Angiotensin System—An Endocrine and Paracrine System. Endocrinology, 2003, 144, 2179-2183.	1.4	484
234	Identification of a Nuclear Orphan Receptor (Ear2) as a Negative Regulator of Renin Gene Transcription. Circulation Research, 2003, 92, 1033-1040.	2.0	56

#	Article	IF	CITATIONS
235	HPRT Targeting. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1960-1962.	1.1	2
236	Abnormal Coronary Function in Mice Deficient in $\hat{l}\pm 1$ HT-type Ca2+Channels. Science, 2003, 302, 1416-1418.	6.0	315
237	Efficiency of chimeraplast gene targeting by direct nuclear injection using a GFP recovery assay. Molecular Therapy, 2003, 7, 248-253.	3.7	35
238	Cerebral Arteriolar Structure in Mice Overexpressing Human Renin and Angiotensinogen. Hypertension, 2003, 41, 50-55.	1.3	95
239	Untraditional methods for targeting the kidney in transgenic mice. American Journal of Physiology - Renal Physiology, 2003, 285, F1027-F1033.	1.3	10
240	Glia- and Neuron-specific Expression of the Renin-Angiotensin System in Brain Alters Blood Pressure, Water Intake, and Salt Preference. Journal of Biological Chemistry, 2002, 277, 33235-33241.	1.6	102
241	A reliable and efficient method for deleting operational sequences in PACs and BACs. Nucleic Acids Research, 2002, 30, 41e-41.	6.5	11
242	Endothelial Dysfunction and Blood Pressure Variability in Selected Inbred Mouse Strains. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 42-48.	1.1	74
243	Structure of Cerebral Arterioles in Cystathionine \hat{l}^2 -Synthase-Deficient Mice. Circulation Research, 2002, 91, 931-937.	2.0	65
244	The Brain Renin-Angiotensin System in Transgenic Mice Carrying a Highly Regulated Human Renin Transgene. Circulation Research, 2002, 90, 80-86.	2.0	44
245	Brain-Selective Overexpression of Angiotensin (AT 1) Receptors Causes Enhanced Cardiovascular Sensitivity in Transgenic Mice. Circulation Research, 2002, 90, 617-624.	2.0	76
246	Increased Superoxide and Vascular Dysfunction in CuZnSOD-Deficient Mice. Circulation Research, 2002, 91, 938-944.	2.0	213
247	Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1569-H1576.	1.5	61
248	Neuron-specific expression of human angiotensinogen in brain causes increased salt appetite. Physiological Genomics, 2002, 9, 113-120.	1.0	37
249	Physiological significance of two common haplotypes of human angiotensinogen using gene targeting in the mouse. Physiological Genomics, 2002, 11 , 253-262.	1.0	25
250	Lower Blood Pressure in Floxed Angiotensinogen Mice After Adenoviral Delivery of Cre-Recombinase. Hypertension, 2002, 39, 629-633.	1.3	23
251	Angiotensin mutant mice: A focus on the brain renin-angiotensin system. Neuropeptides, 2002, 36, 194-200.	0.9	36
252	Regulation of renin expression and blood pressure by vitamin D3. Journal of Clinical Investigation, 2002, 110, 155-156.	3.9	47

#	Article	IF	CITATIONS
253	Use of transgenic and knockout strategies in mice. Seminars in Nephrology, 2002, 22, 154-160.	0.6	4
254	Regulation of renin expression and blood pressure by vitamin D3. Journal of Clinical Investigation, 2002, 110, 155-156.	3.9	29
255	Genetic Manipulation of the Renin-Angiotensin System Using Cre-loxP-Recombinase., 2001, 51, 53-65.		1
256	Genetic manipulation of the renin-angiotensin system: targeted expression of the renin-angiotensin system in the kidney. American Journal of Hypertension, 2001, 14, S33-S37.	1.0	16
257	Differential Requirement for SLP-76 Domains in T Cell Development and Function. Immunity, 2001, 15, 1011-1026.	6.6	95
258	Physiological Insights from Genetic Manipulation of the Renin-Angiotensin System. Physiology, 2001, 16, 80-84.	1.6	3
259	Androgen-dependent regulation of human angiotensinogen expression in KAP-hAGT transgenic mice. American Journal of Physiology - Renal Physiology, 2001, 280, F54-F60.	1.3	47
260	Vectors for High-Level Expression of cDNAs Controlled by Tissue-Specific Promoters in Transgenic Mice. BioTechniques, 2001, 31, 256-260.	0.8	17
261	Genetic manipulation of the renin-angiotensin system in the kidney. Acta Physiologica Scandinavica, 2001, 173, 67-73.	2.3	8
262	Munc18c Regulates Insulin-stimulated GLUT4 Translocation to the Transverse Tubules in Skeletal Muscle. Journal of Biological Chemistry, 2001, 276, 4063-4069.	1.6	65
263	Retinoic Acid-mediated Activation of the MouseRenin Enhancer. Journal of Biological Chemistry, 2001, 276, 3597-3603.	1.6	64
264	NF-Y Antagonizes Renin Enhancer Function by Blocking Stimulatory Transcription Factors. Hypertension, 2001, 38, 332-336.	1.3	34
265	Critical Roles of a Cyclic AMP Responsive Element and an E-box in Regulation of Mouse Renin Gene Expression. Journal of Biological Chemistry, 2001, 276, 45530-45538.	1.6	114
266	Endothelial Dysfunction and Elevation of <i>S</i> -Adenosylhomocysteine in Cystathionine β-Synthase–Deficient Mice. Circulation Research, 2001, 88, 1203-1209.	2.0	202
267	Paradoxical Regulation of Short Promoter Human Renin Transgene by Angiotensin II. Hypertension, 2001, 37, 403-407.	1.3	14
268	Macrophage-Specific Expression of Human Lipoprotein Lipase Accelerates Atherosclerosis in Transgenic Apolipoprotein E Knockout Mice but Not in C57BL/6 Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1809-1815.	1.1	71
269	Genetic Evidence That Lethality in Angiotensinogen-deficient Mice Is Due to Loss of Systemic but Not Renal Angiotensinogen. Journal of Biological Chemistry, 2001, 276, 7431-7436.	1.6	23
270	Elevated Blood Pressure in Transgenic Mice With Brain-Specific Expression of Human Angiotensinogen Driven by the Glial Fibrillary Acidic Protein Promoter. Circulation Research, 2001, 89, 365-372.	2.0	108

#	Article	IF	Citations
271	Understanding hypertension through genetic manipulation in mice. Kidney International, 2000, 57, 863-874.	2.6	44
272	Transgenic and knockout mice to study the renin-angiotensin system and other interacting vasoactive pathways. Current Hypertension Reports, 2000, 2, 211-216.	1.5	7
273	Identification of three human renin mRNA isoforms from alternative tissue-specific transcriptional initiation. Physiological Genomics, 2000, 3, 25-31.	1.0	100
274	Impaired Endothelial Function in Transgenic Mice Expressing Both Human Renin and Human Angiotensinogen. Stroke, 2000, 31, 760-765.	1.0	60
275	Appropriate Tissue- and Cell-specific Expression of a Single Copy Human Angiotensinogen Transgene Specifically Targeted Upstream of the HPRT Locus by Homologous Recombination. Journal of Biological Chemistry, 2000, 275, 1073-1078.	1.6	46
276	Identification of cis Elements in the Cardiac Troponin T Gene Conferring Specific Expression in Cardiac Muscle of Transgenic Mice. Circulation Research, 2000, 86, 478-484.	2.0	36
277	Viewpoint: Are Studies in Genetically Altered Mice Out of Control?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1425-1429.	1.1	118
278	Transgenic models as tools for studying the regulation of human renin expression. Regulatory Peptides, 2000, 86, 77-82.	1.9	12
279	Divergent functions of angiotensin II receptor isoforms in the brain. Journal of Clinical Investigation, 2000, 106, 103-106.	3.9	171
280	Highly Regulated Cell Type-restricted Expression of Human Renin in Mice Containing 140- or 160-Kilobase Pair P1 Phage Artificial Chromosome Transgenes. Journal of Biological Chemistry, 1999, 274, 35785-35793.	1.6	52
281	Novel mechanism of hypertension revealed by cell-specific targeting of human angiotensinogen in transgenic mice. Physiological Genomics, 1999, 1, 3-9.	1.0	128
282	JG cell expression and partial regulation of a human renin genomic transgene driven by a minimal renin promoter. American Journal of Physiology - Renal Physiology, 1999, 277, F634-F642.	1.3	16
283	Species-Specific Differences in Positive and Negative Regulatory Elements in the Renin Gene Enhancer. Circulation Research, 1999, 85, 479-488.	2.0	50
284	Human Renin mRNA Stability Is Increased in Response to cAMP in Calu-6 Cells. Hypertension, 1999, 33, 900-905.	1.3	38
285	Vascular Biology in Genetically Altered Mice. Circulation Research, 1999, 85, 1214-1225.	2.0	74
286	Efficient Liver-specific Deletion of a Floxed Human Angiotensinogen Transgene by Adenoviral Delivery of Cre Recombinasein Vivo. Journal of Biological Chemistry, 1999, 274, 21285-21290.	1.6	82
287	The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Research, 1999, 817, 123-131.	1.1	81
288	Theme I: angiotensin activation mechanisms in hypertension Genetic manipulation of the RAS using the Cre-LoxP recombinase system American Journal of Hypertension, 1999, 12, 215.	1.0	0

#	Article	IF	Citations
289	Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. Journal of Hypertension, 1999, 17, 1949-1953.	0.3	221
290	Transgenesis and Gene Targeting in the Mouse. Trends in Cardiovascular Medicine, 1998, 8, 256-264.	2.3	4
291	Kidney Is the Only Source of Human Plasma Renin in 45-kb Human Renin Transgenic Mice. Circulation Research, 1998, 83, 1279-1288.	2.0	34
292	The Brain Renin-Angiotensin System Contributes to the Hypertension in Mice Containing Both the Human Renin and Human Angiotensinogen Transgenes. Circulation Research, 1998, 83, 1047-1058.	2.0	141
293	Regulatory Elements Required for Human Angiotensinogen Expression in HepG2 Cells Are Dispensable in Transgenic Mice. Hypertension, 1998, 31, 734-740.	1.3	24
294	Developmental expression of human angiotensinogen in transgenic mice. American Journal of Physiology - Renal Physiology, 1998, 274, F932-F939.	1.3	7
295	Responses of carotid artery in mice deficient in expression of the gene for endothelial NO synthase. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H564-H570.	1.5	107
296	Modifiable Gene Expression in Mice: Kidney-Specific Deletion of a Target Gene via the Cre-loxP System. Nephron Experimental Nephrology, 1998, 6, 568-575.	2.4	19
297	The Kidney Androgen-regulated Protein Promoter Confers Renal Proximal Tubule Cell-specific and Highly Androgen-responsive Expression on the Human Angiotensinogen Gene in Transgenic Mice. Journal of Biological Chemistry, 1997, 272, 28142-28148.	1.6	148
298	Transactivation of the Human Renin Promoter by the Cyclic AMP/Protein Kinase A Pathway Is Mediated by Both cAMP-responsive Element Binding Protein-1 (CREB)-dependent and CREB-independent Mechanisms in Calu-6 Cells. Journal of Biological Chemistry, 1997, 272, 2412-2420.	1.6	70
299	Biosynthesis of Renin in Mouse Kidney Tumor As4.1 Cells. FEBS Journal, 1997, 243, 181-190.	0.2	27
300	Downregulation of Renin Gene Expression by Interleukin-1. Hypertension, 1997, 30, 230-235.	1.3	22
301	Conserved Enhancer Elements in Human and Mouse Renin Genes Have Different Transcriptional Effects in As4.1 Cells. Circulation Research, 1997, 81, 558-566.	2.0	46
302	Complementation of reduced survival, hypotension, and renal abnormalities in angiotensinogen-deficient mice by the human renin and human angiotensinogen genes Journal of Clinical Investigation, 1997, 99, 1258-1264.	3.9	69
303	Transcriptional and posttranscriptional mechanisms regulate human renin gene expression in Calu-6 cells. American Journal of Physiology - Renal Physiology, 1996, 271, F94-F100.	1.3	23
304	Transgenic animal models as tools for studying renal developmental physiology. Pediatric Nephrology, 1996, 10, 798-803.	0.9	1
305	Inappropriate splicing of a chimeric gene containing a large internal exon results in exon skipping in transgenic mice. Nucleic Acids Research, 1996, 24, 4023-4028.	6.5	11
306	Role of Proximal Promoter Elements in Regulation of Renin Gene Transcription. Journal of Biological Chemistry, 1996, 271, 22499-22505.	1.6	104

#	Article	IF	Citations
307	Regulation of Human Renin mRNA Expression and Protein Release in Transgenic Mice. Hypertension, 1996, 28, 290-296.	1.3	20
308	Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes Journal of Clinical Investigation, 1996, 97, 1047-1055.	3.9	169
309	Transgenic animals in the study of blood pressure regulation and hypertension. American Journal of Physiology - Endocrinology and Metabolism, 1995, 269, E793-E803.	1.8	4
310	Human renin 5′-flanking DMA to nucleotide -2750. DNA Sequence, 1995, 5, 319-321.	0.7	4
311	Endogenous Human Renin Expression and Promoter Activity in CALU-6, a Pulmonary Carcinoma Cell Line. Hypertension, 1995, 25, 704-710.	1.3	39
312	Differential expression of angiotensin receptor 1A and 1B in mouse. American Journal of Physiology - Endocrinology and Metabolism, 1994, 267, E260-E267.	1.8	129
313	Transgenic Animals as Tools in Hypertension Research. Experimental Biology and Medicine, 1994, 205, 106-118.	1.1	4
314	A Pit-1 binding site in the human renin gene promoter stimulates activity in pituitary, placental and juxtaglomerular cells. Kidney International, 1994, 46, 1513-1515.	2.6	15
315	Expression of the human renin gene in transgenic mice throughout ontogeny. Pediatric Nephrology, 1993, 7, 639-645.	0.9	18
316	Major approaches for generating and analyzing transgenic mice. An overview Hypertension, 1993, 22, 599-607.	1.3	55
317	Regulated tissue- and cell-specific expression of the human renin gene in transgenic mice Circulation Research, 1992, 70, 1070-1079.	2.0	97
318	Expression and regulation of the renin gene. Trends in Cardiovascular Medicine, 1992, 2, 237-245.	2.3	16
319	Pathophysiology of vascular smooth muscle in renin promoter-T-antigen transgenic mice. American Journal of Physiology - Renal Physiology, 1991, 260, F249-F257.	1.3	8
320	Structure, expression, and regulation of the murine renin genes Hypertension, 1991, 18, 446-457.	1.3	115
321	Expression of Murine Renin Genes during Fetal Development. Molecular Endocrinology, 1990, 4, 375-383.	3.7	115
322	Expression of murine renin genes in subcutaneous connective tissue Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7993-7997.	3.3	32
323	Tissue and cell specific expression of a renin promoter-reporter gene construct in transgenic mice. Biochemical and Biophysical Research Communications, 1990, 170, 344-350.	1.0	69
324	Differential expression of the murine and rat renin genes in peripheral subcutaneous tissue. Biochemical and Biophysical Research Communications, 1990, 173, 218-223.	1.0	13

#	Article	IF	CITATIONS
325	Effects of Escherichia coli Nus A protein on transcription termination in vitro are not increased or decreased by DNA sequences sufficient for antitermination in vivo. Biochemistry, 1988, 27, 5628-5635.	1.2	7
326	Nus A protein affects transcriptional pausing and termination in vitro by binding to different sites on the transcription complex. Biochemistry, 1988, 27, 5622-5627.	1.2	37
327	[46] Antibiotic resistance mutations in ribosomal RNA genes of Escherichia coli. Methods in Enzymology, 1988, 164, 673-690.	0.4	187
328	Studies on the Regulation of Renin Genes Using Transgenic Mice. Clinical and Experimental Hypertension, 1988, 10, 1157-1167.	0.3	11
329	Antibiotic Resistance Mutations in Escherichia Coli Ribosomal RNA Genes and their Uses., 1988,, 43-53.		4
330	Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Research, 1984, 12, 4653-4664.	6.5	263
331	Spectinomycin resistance due to a mutation in an rRNA operon of Escherichia coli. Journal of Bacteriology, 1983, 155, 989-994.	1.0	26
332	Erythromycin resistance due to a mutation in a ribosomal RNA operon of Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5602-5606.	3.3	62