
Zheng-Yi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090692/publications.pdf Version: 2024-02-01

ZHENC-YI CHEN

#	Article	IF	CITATIONS
1	Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Molecular Therapy, 2022, 30, 105-118.	8.2	31
2	Preventing autosomal-dominant hearing loss in Bth mice with CRISPR/CasRx-based RNA editing. Signal Transduction and Targeted Therapy, 2022, 7, 79.	17.1	22
3	Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 95-105.	1.8	15
4	Generation and characterization of a <i>P2rx2</i> V60L mouse model for DFNA41. Human Molecular Genetics, 2021, 30, 985-995.	2.9	4
5	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
6	Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes, 2021, 12, 805.	2.4	16
7	A Novel in vitro Model Delineating Hair Cell Regeneration and Neural Reinnervation in Adult Mouse Cochlea. Frontiers in Molecular Neuroscience, 2021, 14, 757831.	2.9	1
8	Direct Functional Protein Delivery with a Peptide into Neonatal and Adult Mammalian Inner Ear InÂVivo. Molecular Therapy - Methods and Clinical Development, 2020, 18, 511-519.	4.1	5
9	Characterization of UMi028-A-1 stem cell line that contains a CRISPR/Cas9 induced hearing loss-associated variant (V60L (c.178GÂ>ÂT)) in the P2RX2 gene. Stem Cell Research, 2020, 49, 102017.	0.7	1
10	Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials, 2020, 234, 119711.	11.4	58
11	Genome and base editing for genetic hearing loss. Hearing Research, 2020, 394, 107958.	2.0	18
12	Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nature Communications, 2019, 10, 5530.	12.8	71
13	In Vivo Assessment of Potential Therapeutic Approaches for USH2A-Associated Diseases. Advances in Experimental Medicine and Biology, 2019, 1185, 91-96.	1.6	26
14	Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 2018, 553, 217-221.	27.8	412
15	Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Human Gene Therapy, 2018, 29, 492-506.	2.7	64
16	The Key Transcription Factor Expression in the Developing Vestibular and Auditory Sensory Organs: A Comprehensive Comparison of Spatial and Temporal Patterns. Neural Plasticity, 2018, 2018, 1-9.	2.2	8
17	Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis. Human Genetics, 2017, 136, 1463-1475.	3.8	28
18	Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear <i> In Vivo</i> . Neural Plasticity, 2016, 2016, 1-8.	2.2	26

ZHENG-YI CHEN

#	Article	IF	CITATIONS
19	Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes. Human Gene Therapy, 2016, 27, 687-699.	2.7	79
20	Biomedical applications of gene editing. Human Genetics, 2016, 135, 967-969.	3.8	1
21	Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration. PLoS ONE, 2016, 11, e0157768.	2.5	22
22	The application of genome editing in studying hearing loss. Hearing Research, 2015, 327, 102-108.	2.0	46
23	Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 166-171.	7.1	182
24	Gene Expression by Mouse Inner Ear Hair Cells during Development. Journal of Neuroscience, 2015, 35, 6366-6380.	3.6	308
25	Discovery and Characterization of a Peptide That Enhances Endosomal Escape of Delivered Proteins in Vitro and in Vivo. Journal of the American Chemical Society, 2015, 137, 14084-14093.	13.7	109
26	XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia. Cell Reports, 2015, 10, 1811-1818.	6.4	32
27	Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 2015, 33, 73-80.	17.5	1,180
28	Hair Cell Overexpression of Islet1 Reduces Age-Related and Noise-Induced Hearing Loss. Journal of Neuroscience, 2013, 33, 15086-15094.	3.6	41
29	Disrupting the Interaction between Retinoblastoma Protein and Raf-1 Leads to Defects in Progenitor Cell Proliferation and Survival during Early Inner Ear Development. PLoS ONE, 2013, 8, e83726.	2.5	4
30	Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs. Cell Cycle, 2011, 10, 337-351.	2.6	29
31	Diverse expression patterns of LIMâ€homeodomain transcription factors (LIMâ€HDs) in mammalian inner ear development. Developmental Dynamics, 2008, 237, 3305-3312.	1.8	33
32	The α1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and coâ€expression with the γ subunit in hair cells. Journal of Neurochemistry, 2007, 103, 2651-2664.	3.9	27
33	Proliferation of Functional Hair Cells in Vivo in the Absence of the Retinoblastoma Protein. Science, 2005, 307, 1114-1118.	12.6	240
34	Applications of genomics in the inner ear. Pharmacogenomics, 2003, 4, 735-745.	1.3	3