
Hans-Reimer Rodewald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090679/publications.pdf Version: 2024-02-01

HANS-REIMER RODEWALD

#	Article	IF	CITATIONS
1	Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015, 518, 547-551.	27.8	1,724
2	Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 2015, 518, 542-546.	27.8	607
3	Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine, 2014, 211, 2151-2158.	8.5	374
4	Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature, 2017, 548, 456-460.	27.8	312
5	Cre-Mediated Cell Ablation Contests Mast Cell Contribution in Models of Antibody- and T Cell-Mediated Autoimmunity. Immunity, 2011, 35, 832-844.	14.3	292
6	Fate Mapping Reveals Separate Origins of T Cells and Myeloid Lineages in the Thymus. Immunity, 2010, 32, 426-436.	14.3	268
7	β ₂ -adrenergic receptor–mediated negative regulation of group 2 innate lymphoid cell responses. Science, 2018, 359, 1056-1061.	12.6	262
8	Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nature Immunology, 2016, 17, 656-665.	14.5	215
9	Widespread Immunological Functions of Mast Cells: Fact or Fiction?. Immunity, 2012, 37, 13-24.	14.3	214
10	Cell competition is a tumour suppressor mechanism in the thymus. Nature, 2014, 509, 465-470.	27.8	209
11	Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 2016, 45, 1219-1231.	14.3	199
12	Tissue-Restricted Adaptive Type 2 Immunity Is Orchestrated by Expression of the Costimulatory Molecule OX40L on Group 2 Innate Lymphoid Cells. Immunity, 2018, 48, 1195-1207.e6.	14.3	191
13	Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity, 1995, 3, 313-319.	14.3	190
14	A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nature Medicine, 2014, 20, 1340-1347.	30.7	188
15	Viable c-KitW/W Mutants Reveal Pivotal Role for c-Kit in the Maintenance of Lymphopoiesis. Immunity, 2002, 17, 277-288.	14.3	156
16	Deletion of Notch1 Converts Pro-T Cells to Dendritic Cells and Promotes Thymic B Cells by Cell-Extrinsic and Cell-Intrinsic Mechanisms. Immunity, 2009, 30, 67-79.	14.3	153
17	Local immune response to food antigens drives meal-induced abdominal pain. Nature, 2021, 590, 151-156.	27.8	153
18	Evidence for a Functional Second Thymus in Mice. Science, 2006, 312, 284-287.	12.6	142

#	Article	IF	CITATIONS
19	Molecular mechanism of mast cell–mediated innate defense against endothelin and snake venom sarafotoxin. Journal of Experimental Medicine, 2007, 204, 2629-2639.	8.5	140
20	Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. Journal of Clinical Investigation, 2011, 121, 4180-4191.	8.2	134
21	The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells. Cell Reports, 2015, 12, 1761-1773.	6.4	131
22	Bcl11b is essential for group 2 innate lymphoid cell development. Journal of Experimental Medicine, 2015, 212, 875-882.	8.5	126
23	Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity, 2020, 52, 404-416.e5.	14.3	116
24	ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nature Immunology, 2020, 21, 998-1009.	14.5	112
25	ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. Journal of Experimental Medicine, 2017, 214, 2507-2521.	8.5	109
26	The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nature Immunology, 2015, 16, 775-784.	14.5	107
27	Thymus-autonomous T cell development in the absence of progenitor import. Journal of Experimental Medicine, 2012, 209, 1409-1417.	8.5	99
28	Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. Journal of Experimental Medicine, 2016, 213, 1353-1374.	8.5	97
29	Hematopoietic stem cell transplantation without irradiation. Nature Methods, 2009, 6, 267-269.	19.0	91
30	Resolving Fates and Single-Cell Transcriptomes of Hematopoietic Stem Cell Clones by PolyloxExpress Barcoding. Cell Stem Cell, 2020, 27, 383-395.e8.	11.1	88
31	Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications, 2017, 8, 15781.	12.8	84
32	Foxn1 Protein Expression in the Developing, Aging, and Regenerating Thymus. Journal of Immunology, 2015, 195, 5678-5687.	0.8	79
33	Interleukin-33 Induces the Enzyme Tryptophan Hydroxylase 1 to Promote Inflammatory Group 2 Innate Lymphoid Cell-Mediated Immunity. Immunity, 2020, 52, 606-619.e6.	14.3	76
34	Single-Cell Gene Expression Analyses Reveal Heterogeneous Responsiveness of Fetal Innate Lymphoid Progenitors to Notch Signaling. Cell Reports, 2016, 14, 1500-1516.	6.4	75
35	Mast Cells Are Dispensable for Normal and Activin-Promoted Wound Healing and Skin Carcinogenesis. Journal of Immunology, 2013, 191, 6147-6155.	0.8	73
36	The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity, 2017, 46, 818-834.e4.	14.3	73

#	Article	IF	CITATIONS
37	The helminth T2 RNase ï‰1 promotes metabolic homeostasis in an ILâ€33―and group 2 innate lymphoid cellâ€dependent mechanism. FASEB Journal, 2016, 30, 824-835.	0.5	70
38	Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E). Blood, 2005, 105, 1937-1945.	1.4	68
39	Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture. Proceedings of the United States of America, 2005, 102, 10587-10592.	7.1	68
40	The Inflammatory Response after an Epidermal Burn Depends on the Activities of Mouse Mast Cell Proteases 4 and 5. Journal of Immunology, 2010, 185, 7681-7690.	0.8	62
41	Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance. Cell Metabolism, 2015, 21, 678-691.	16.2	62
42	Of Mouse Models of Mast Cell Deficiency and Metabolic Syndrome. Cell Metabolism, 2016, 24, 1-2.	16.2	59
43	Fate Mapping and Quantitation of Hematopoiesis In Vivo. Annual Review of Immunology, 2016, 34, 449-478.	21.8	57
44	Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood, 2018, 132, 1106-1113.	1.4	55
45	Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunology, 2020, 13, 626-636.	6.0	52
46	Do haematopoietic stem cells age?. Nature Reviews Immunology, 2020, 20, 196-202.	22.7	50
47	Rescue of lethal c-KitW/W mice by erythropoietin. Blood, 2004, 104, 1688-1695.	1.4	49
48	Early T cell development and the pitfalls of potential. Trends in Immunology, 2010, 31, 303-310.	6.8	47
49	Foxp3+ Regulatory T Cells Delay Expulsion of Intestinal Nematodes by Suppression of IL-9-Driven Mast Cell Activation in BALB/c but Not in C57BL/6 Mice. PLoS Pathogens, 2014, 10, e1003913.	4.7	47
50	Kit Ligand and Il7 Differentially Regulate Peyer's Patch and Lymph Node Development. Journal of Immunology, 2010, 185, 3514-3519.	0.8	44
51	The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1–Hif1a and c-myc/p19Arf pathways to suppress innate variant T _{FH} cell development, thymocyte expansion, and lymphomagenesis. Genes and Development, 2015, 29, 409-425.	5.9	43
52	Unperturbed vs. post-transplantation hematopoiesis. Current Opinion in Hematology, 2016, 23, 295-303.	2.5	40
53	Mast Cell–deficient <i>KitW-sh</i> "Sash―Mutant Mice Display Aberrant Myelopoiesis Leading to the Accumulation of Splenocytes That Act as Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 5534-5544.	0.8	36
54	Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS ONE, 2017, 12, e0174396.	2.5	34

HANS-REIMER RODEWALD

#	Article	IF	CITATIONS
55	Mast Cells Play No Role in the Pathogenesis of Postoperative Ileus Induced by Intestinal Manipulation. PLoS ONE, 2014, 9, e85304.	2.5	28
56	Mast cellâ€derived serotonin enhances methacholineâ€induced airway hyperresponsiveness in house dust miteâ€induced experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2057-2069.	5.7	27
57	Lymphocyte Development in Neonatal and Adult C-Kit-Deficient (C-Kitw/w) Mice. Advances in Experimental Medicine and Biology, 2002, 512, 1-10.	1.6	26
58	Type 1 Diabetes in NOD Mice Unaffected by Mast Cell Deficiency. Diabetes, 2014, 63, 3827-3834.	0.6	25
59	Mast cells have no impact on cutaneous leishmaniasis severity and related Th2 differentiation in resistant and susceptible mice. European Journal of Immunology, 2016, 46, 114-121.	2.9	24
60	Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice. Nature Protocols, 2019, 14, 1820-1840.	12.0	21
61	Kit is essential for PMA-inflammation–induced mast-cell accumulation in the skin. Blood, 2007, 109, 5363-5370.	1.4	19
62	Output without input: the lifelong productivity of hematopoietic stem cells. Current Opinion in Cell Biology, 2016, 43, 69-77.	5.4	15
63	Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Science Immunology, 2022, 7, eabn3286.	11.9	15
64	Unimpaired Responses to Vaccination With Protein Antigen Plus Adjuvant in Mice With Kit-Independent Mast Cell Deficiency. Frontiers in Immunology, 2018, 9, 1870.	4.8	12
65	The Thymic Microenvironment Differentially Regulates Development and Trafficking of Invariant NKT Cell Sublineages. Journal of Immunology, 2014, 193, 5960-5972.	0.8	10
66	Response to Brown etÂal Immunity, 2012, 36, 893-894.	14.3	8
67	Normal mast cell numbers in the tissues of AhRâ€deficient mice. Experimental Dermatology, 2016, 25, 62-63.	2.9	6
68	Duodenal acidification induces gastric relaxation and alters epithelial barrier function by a mast cell independent mechanism. Scientific Reports, 2020, 10, 17448.	3.3	6
69	Multilayered ancestry of arterial macrophages. Nature Immunology, 2016, 17, 117-118.	14.5	5
70	Runner's niche: multipurpose stromal cells maintained by exercise. Trends in Immunology, 2021, 42, 841-843.	6.8	1
71	Mast cells partly contribute to allergic enteritis development: Findings in two different mast cellâ€deficient mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1051-1054.	5.7	1
72	TowardÂthe dissection of hematopoietic stem cell fates and their determinants. Current Opinion in Genetics and Development, 2022, 75, 101945.	3.3	1

#	Article	IF	CITATIONS
73	Comparative analysis of the role of mast cells in murine asthma models using Kitâ€sufficient mast cellâ€deficient animals. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2030-2043.	5.7	0
74	Abstract 213: Myofilament Ca2+ Sensitization and Site-specific Phosphorylation of Contractile Proteins Following Myocardial Infarction: A Novel Role for Mast Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0