Marco Bazzan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090091/publications.pdf

Version: 2024-02-01

		12303	6282
165	52,829	69	158
papers	citations	h-index	g-index
168	168	168	17149
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
11	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11 , .	2.8	1,097
12	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
14	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
15	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
16	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext>â€%</mml:mtext><mml:mtext>â€%</mml:mtext> â€% â€%<td>nmlzntext:</td><td>> < n836 msub ></td></mml:mrow></mml:math>	nml znt ext:	> < n 836 msub >
17	Letters, 2020, 125, 101102. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
18	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728

#	Article	IF	CITATIONS
19	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
20	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
21	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
22	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
23	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
24	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
25	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453
26	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
27	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
28	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
29	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
30	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
31	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
32	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
33	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
34	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
35	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
36	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225

#	Article	IF	CITATIONS
37	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
38	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
39	Optical waveguides in lithium niobate: Recent developments and applications. Applied Physics Reviews, 2015, 2, .	5. 5	197
40	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
41	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	1.6	192
42	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
43	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
44	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
45	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
46	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
47	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
48	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
49	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
50	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
51	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
52	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
53	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
54	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106

#	Article	IF	CITATIONS
55	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
56	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
57	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
58	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
59	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
60	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
61	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
62	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87
63	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
64	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
65	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
66	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
67	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
68	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
69	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
70	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
71	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
72	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69

#	Article	IF	CITATIONS
7 3	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
74	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
7 5	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
76	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
77	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	1.6	62
78	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
79	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
80	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
81	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
82	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
83	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
84	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, $2019,100,100$	1.6	54
85	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
86	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
87	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
88	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
89	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
90	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97 , .	1.6	46

#	Article	IF	CITATIONS
91	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46
92	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
93	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	1.6	43
94	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	1.6	42
95	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1 ().784314 1.5	rgBT /Over <mark>lo</mark>
96	Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS. Applied Surface Science, 2018, 440, 458-466.	3.1	37
97	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters. 2019. 122. 061104.	2.9	36
98	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
99	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	2.9	35
100	Polaronic deformation at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mtext>Fe</mml:mtext><mml:mrow><i in<mml:math="" site="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>Fe:LiNbO</mml:mtext><mml:m< td=""><td>1.1</td><td>33</td></mml:m<></mml:msub></i></mml:mrow></mml:msup></mml:math>	1.1	33
101	Physical Review B, 2015, 91, . All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	33
102	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	1.6	33
103	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	3.0	32
104	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	2.1	32
105	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
106	Structural and optical properties of zirconium doped lithium niobate crystals. Journal of Applied Physics, 2010, 108, 093508.	1.1	30
107	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
108	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29

#	Article	IF	Citations
109	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
110	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	1.6	27
111	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
112	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
113	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	1.6	21
114	Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption. Applied Spectroscopy, 2011, 65, 216-220.	1.2	20
115	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	1.6	20
116	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	1.5	20
117	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
118	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	19
119	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
120	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	1.6	18
121	Morphological and Functional Modifications of Optical Thin Films for Space Applications Irradiated with Low-Energy Helium Ions. ACS Applied Materials & Interfaces, 2018, 10, 34781-34791.	4.0	17
122	Preface to Special Topic: Lithium Niobate Properties and Applications: Reviews of Emerging Trends. Applied Physics Reviews, 2015, 2, .	5.5	16
123	Micro-Raman analysis of Fe-diffused lithium niobate waveguides. Applied Physics B: Lasers and Optics, 2010, 101, 541-546.	1.1	15
124	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	1.6	15
125	Small Polaron Hopping in Fe:LiNbO3 as a Function of Temperature and Composition. Crystals, 2018, 8, 294.	1.0	14
126	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12

#	Article	IF	Citations
127	Dependence of the damage in optical metal/dielectric coatings on the energy of ions in irradiation experiments for space qualification. Scientific Reports, 2021, 11, 3429.	1.6	12
128	Lithium niobate crystals doped with iron by thermal diffusion: Relation between lattice deformation and reduction degree. Journal of Applied Physics, 2010, 107, .	1.1	11
129	The elusive role of Nb _{Li} bound polaron energy in hopping charge transport in Fe: LiNbO ₃ . Journal of Physics Condensed Matter, 2018, 30, 125701.	0.7	11
130	The role of self-trapped excitons in polaronic recombination processes in lithium niobate. Journal of Physics Condensed Matter, 2019, 31, 065701.	0.7	11
131	Gold Nanodisks Plasmonic Array for Hydrogen Sensing at Low Temperature. Sensors, 2019, 19, 647.	2.1	10
132	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
133	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
134	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
135	Raman frequency shift induced by photorefractive effect on Fe–doped lithium niobate. Journal of Applied Physics, 2013, 114, 163506.	1.1	8
136	In situ real-time investigation of hydrogen-induced structural and optical changes in palladium thin films. Journal of Alloys and Compounds, 2017, 704, 303-310.	2.8	8
137	Modeling and Characterization of Border Domain Effects in Periodically Poled Lithium Niobate Crystals Grown by the Off-center Czochralski Technique. Optical and Quantum Electronics, 2006, 38, 177-185.	1.5	7
138	Photorefractive effect at 775 nm in doped lithium niobate crystals. Applied Physics Letters, 2013, 103, 031904.	1.5	7
139	High Resolution X-Ray Characterization of Sub-Micron Periodic Domain Structures in Lithium Niobate Crystals. Ferroelectrics, 2007, 352, 25-34.	0.3	6
140	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
141	A polaron approach to photorefractivity in Fe : LiNbO $<$ sub $>$ 3 $<$ /sub $>$. Journal of Physics Communications, 2018, 2, 125003.	0.5	6
142	Polaron Trapping and Migration in Iron-Doped Lithium Niobate. Crystals, 2021, 11, 302.	1.0	5
143	3D characterization of low optical absorption structures in large crystalline sapphire substrates for gravitational wave detectors. Scientific Reports, 2021, 11, 2654.	1.6	5
144	A study of the brightest peaks in the diffraction pattern of Fibonacci gratings. Journal of Optics (United Kingdom), 2017, 19, 055613.	1.0	4

#	Article	IF	CITATIONS
145	Multilayers for directed energy accelerated lightsails. Communications Materials, 2022, 3, .	2.9	4
146	A Novel Configuration for Phase-Matched Second-Harmonic Generation in LiNbO\$_3\$ Waveguides. IEEE Photonics Technology Letters, 2007, 19, 553-555.	1.3	3
147	Diffusion of iron in lithium niobate: a secondary ion mass spectrometry study. Applied Physics A: Materials Science and Processing, 2011, 105, 111-118.	1.1	3
148	Equivalence classes of Fibonacci lattices and their similarity properties. Physical Review A, 2016, 94, .	1.0	3
149	Automated source of squeezed vacuum states driven by finite state machine based software. Review of Scientific Instruments, 2021, 92, 054504.	0.6	3
150	Refractive Index Modulation in Periodically Poled Lithium Niobate Crystals. Ferroelectrics, 2007, 352, 125-133.	0.3	2
151	Phase-matched SHG in periodically poled LiNbO3 waveguides: A novel configuration. Optical and Quantum Electronics, 2007, 38, 889-901.	1.5	2
152	Raman Investigation of Fe inâ€"Diffused Photorefractive Waveguides on Lithium Niobate Substrates. Ferroelectrics, 2009, 390, 3-9.	0.3	2
153	The PLanetary extreme Ultraviolet Spectrometer Project. , 2021, , .		2
154	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , $2018, 21, 1$.		2
155	Optical characterization of erbium doped LiNbO3 poling properties. Journal of Applied Physics, 2008, 104, 014103.	1.1	1
156	Efficient second harmonic generation with compact design: double-pass and cavity configurations. Laser Physics, 2018, 28, 115401.	0.6	1
157	Time evolution of Symmetry-forbidden Raman lines activated by photorefractivity. Scientific Reports, 2019, 9, 13408.	1.6	1
158	Prediction of second harmonic generation efficiency in real periodically poled lithium niobate structures grown by the off-center czochralski technique. , 0 , , .		0
159	Solitonic waveguide laser in erbium doped lithium niobate. , 2009, , .		0
160	Depth Resolved Study of the Composition and Polaron Luminescence of Fe:LiNbO ₃ Diffused Crystals. Ferroelectrics, 2009, 389, 142-152.	0.3	0
161	Photorefractive Lithium Niobate crystals: light polarisation rotation highlighted by transmission Raman spectroscopy. Journal of Physics: Conference Series, 2017, 867, 012035.	0.3	0
162	Study and experiment on the alternative technique of frequency–dependent squeezing generation with EPR entanglement for Virgo. Journal of Physics: Conference Series, 2020, 1468, 012215.	0.3	0

#	Article	IF	CITATIONS
163	A Simple Method for Photoconductivity Measurement in Lithium Niobate. Crystals, 2020, 10, 461.	1.0	O
164	Advanced Virgo Status., 2017,,.		0
165	Room-temperature sensing performance of hydrogen using palladium-based film by optical setup. Optica Applicata, 2020, 50, .	0.1	0