Guillermo D Mazzolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3089953/publications.pdf

Version: 2024-02-01

34 papers 1,264 citations

³⁶¹⁴¹³
20
h-index

31 g-index

38 all docs 38 docs citations 38 times ranked 1866 citing authors

#	Article	IF	Citations
1	Generation and characterization of human mesenchymal stem/stromal cells for cell therapy applications. Methods in Cell Biology, 2022, , .	1.1	1
2	Evaluation of cancer stem cells markers expression in HCC trough real-time polymerase chain reaction. Methods in Cell Biology, 2022, , .	1.1	0
3	SPARC inhibition accelerates NAFLDâ€associated hepatocellular carcinoma development by dysregulating hepatic lipid metabolism. Liver International, 2021, 41, 1677-1693.	3.9	17
4	4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Scientific Reports, 2021, 11, 6310.	3.3	13
5	Bioinformatic analysis of RHO family of GTPases identifies RAC1 pharmacological inhibition as a new therapeutic strategy for hepatocellular carcinoma. Gut, 2021, 70, 1362-1374.	12.1	21
6	Human umbilical cord perivascular cells-derived extracellular vesicles mediate the transfer of IGF-I to the liver and ameliorate hepatic fibrogenesis in mice. Gene Therapy, 2020, 27, 62-73.	4.5	27
7	Immunotherapy for Hepatocellular Carcinoma: Is Latin America Ready for Primetime?. Clinical Liver Disease, 2020, 16, 96-100.	2.1	0
8	Argentinian clinical practice guideline for surveillance, diagnosis, staging and treatment of hepatocellular carcinoma. Annals of Hepatology, 2020, 19, 546-569.	1.5	11
9	A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets. Journal of Hepatology, 2019, 71, 78-90.	3.7	72
10	Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis. Scientific Reports, 2019, 9, 4026.	3.3	25
11	SPARC is required for the maintenance of glucose homeostasis and insulin secretion in mice. Clinical Science, 2019, 133, 351-365.	4.3	33
12	SPARC expression is associated with hepatic injury in rodents and humans with non-alcoholic fatty liver disease. Scientific Reports, 2018, 8, 725.	3.3	23
13	Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: Cells and extracellular vesicles as therapeutic strategies. World Journal of Gastroenterology, 2018, 24, 2427-2440.	3.3	31
14	4Mu Decreases CD47 Expression on Hepatic Cancer Stem Cells and Primes a Potent Antitumor T Cell Response Induced by Interleukin-12. Molecular Therapy, 2018, 26, 2738-2750.	8.2	53
15	Immunostimulatory monoclonal antibodies for hepatocellular carcinoma therapy. Trends and perspectives. Medicina, 2018, 78, 29-32.	0.6	2
16	Involvement of hepatic macrophages in the antifibrotic effect of IGF-I-overexpressing mesenchymal stromal cells. Stem Cell Research and Therapy, 2016, 7, 172.	5.5	22
17	Tumor Microenvironment Remodeling by 4-Methylumbelliferone Boosts the Antitumor Effect of Combined Immunotherapy in Murine Colorectal Carcinoma. Molecular Therapy, 2015, 23, 1444-1455.	8.2	18
18	4-Methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology, 2015, 25, 825-835.	2.5	48

#	Article	IF	CITATIONS
19	Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Reviews and Reports, 2015, 11, 586-597.	5 . 6	40
20	Mesenchymal Stromal Cells Engineered to Produce IGF-I by Recombinant Adenovirus Ameliorate Liver Fibrosis in Mice. Stem Cells and Development, 2015, 24, 791-801.	2.1	63
21	Increased Migration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF) Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e95171.	2.5	42
22	Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor. BioMed Research International, 2014, 2014, 1-9.	1.9	14
23	Dendritic cells regulate angiogenesis associated with liver fibrogenesis. Angiogenesis, 2014, 17, 119-128.	7.2	19
24	The therapeutic potential of bone marrowâ€derived mesenchymal stromal cells on hepatocellular carcinoma. Liver International, 2014, 34, 330-342.	3.9	18
25	Low Molecular Weight Hyaluronan-Pulsed Human Dendritic Cells Showed Increased Migration Capacity and Induced Resistance to Tumor Chemoattraction. PLoS ONE, 2014, 9, e107944.	2.5	20
26	Lack of the Matricellular Protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) Attenuates Liver Fibrogenesis in Mice. PLoS ONE, 2013, 8, e54962.	2.5	43
27	Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice. Glycobiology, 2012, 22, 400-410.	2.5	91
28	The liver, liver metastasis and liver cancer: a special case for immunotherapy with cytokines and immunostimulatory monoclonal antibodies. Immunotherapy, 2012, 4, 1081-1085.	2.0	6
29	Reversal of gastrointestinal carcinomaâ€induced immunosuppression and induction of antitumoural immunity by a combination of cyclophosphamide and gene transfer of ILâ€12. Molecular Oncology, 2011, 5, 242-255.	4.6	32
30	SPARC downregulation attenuates the profibrogenic response of hepatic stellate cells induced by TGF-β ₁ and PDGF. American Journal of Physiology - Renal Physiology, 2011, 300, G739-G748.	3.4	36
31	Overexpression of SPARC obliterates the <i>in vivo</i> tumorigenicity of human hepatocellular carcinoma cells. International Journal of Cancer, 2010, 126, 2726-2740.	5.1	38
32	A Novel Synergistic Combination of Cyclophosphamide and Gene Transfer of Interleukin-12 Eradicates Colorectal Carcinoma in Mice. Clinical Cancer Research, 2009, 15, 7256-7265.	7.0	37
33	Adenovirusâ€mediated inhibition of SPARC attenuates liver fibrosis in rats. Journal of Gene Medicine, 2008, 10, 993-1004.	2.8	53
34	Phase I Trial of Intratumoral Injection of an Adenovirus Encoding Interleukin-12 for Advanced Digestive Tumors. Journal of Clinical Oncology, 2004, 22, 1389-1397.	1.6	295