List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3089701/publications.pdf Version: 2024-02-01

		31976	25787
169	12,316	53	108
papers	citations	h-index	g-index
173	173	173	13838
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Yolk–Shell P3â€Type K _{0.5} [Mn _{0.85} Ni _{0.1} Co _{0.05}]O ₂ : A Lowâ€Cost Cathode for Potassiumâ€lon Batteries. Energy and Environmental Materials, 2022, 5, 261-269.	12.8	36
2	Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. ChemPhysChem, 2022, 23, .	2.1	12
3	Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nature Sustainability, 2022, 5, 225-234.	23.7	293
4	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	12
5	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
6	Phonon anharmonicity in binary chalcogenides for efficient energy harvesting. Materials Horizons, 2022, 9, 1602-1622.	12.2	5
7	Generating and Capturing Secondary Hot Carriers in Monolayer Tungsten Dichalcogenides. Journal of Physical Chemistry Letters, 2022, 13, 5703-5710.	4.6	2
8	Cyclic-anion salt for high-voltage stable potassium-metal batteries. National Science Review, 2022, 9, .	9.5	123
9	Cell-like-carbon-micro-spheres for robust potassium anode. National Science Review, 2021, 8, nwaa276.	9.5	166
10	Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy and Environmental Science, 2021, 14, 965-974.	30.8	164
11	Graphene Foam Current Collector for High-Areal-Capacity Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2021, 4, 53-60.	5.0	16
12	Anisotropic elasticity drives negative thermal expansion in monocrystalline SnSe. Physical Review B, 2021, 103, .	3.2	11
13	Artificial SEI for Superhighâ€Performance Kâ€Graphite Anode. Advanced Science, 2021, 8, 2003639.	11.2	59
14	In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. Nature Communications, 2021, 12, 1636.	12.8	11
15	Impressively printing patterns of gold and silver nanoparticles. Nano Select, 2021, 2, 2407-2418.	3.7	0
16	Regulating Solvent Molecule Coordination with KPF ₆ for Superstable Graphite Potassium Anodes. ACS Nano, 2021, 15, 9167-9175.	14.6	89
17	Prospects of Electrode Materials and Electrolytes for Practical Potassiumâ€Based Batteries. Small Methods, 2021, 5, e2101131.	8.6	129
18	Strategies for improving rechargeable lithium-ion batteries: From active materials to CO ₂ emissions. Nanotechnology Reviews, 2021, 10, 1993-2026.	5.8	9

щ		IF	CITATIONS
#	ARTICLE Enhanced Hydrogen Evolution Reaction By Porous Curcumin Enveloped Gold Nanoparticles. ECS Meeting Abstracts, 2021, MA2021-02, 1884-1884.	0.0	0
20	Ti ₂ CT _{<i>x</i>} MXeneâ€based allâ€optical modulator. InformaÄnÃ-Materiály, 2020, 2, 601-609.	17.3	39
21	High <i>zT</i> and Its Origin in Sbâ€doped GeTe Single Crystals. Advanced Science, 2020, 7, 2002494.	11.2	36
22	Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries. , 2020, 2, 853-860.		70
23	Fullereneâ€Enhanced Triboelectric Nanogenerators. Advanced Materials Technologies, 2020, 5, 2000295.	5.8	15
24	The correlation between phase transition and photoluminescence properties of CsPbX ₃ (X) Tj ETQq0	000 rgBT	/Qyerlock 10
25	Three-Dimensional Si Anodes with Fast Diffusion, High Capacity, High Rate Capability, and Long Cycle Life. ACS Applied Materials & Interfaces, 2020, 12, 34763-34770.	8.0	11
26	Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties. Nanoscale Advances, 2020, 2, 2507-2513.	4.6	24
27	Unleashing the potential of Ti 2 CT x MXene as a pulse modulator for mid-infrared fiber lasers. 2D Materials, 2019, 6, 045038.	4.4	83
28	Carbon Nanotubes Coated Paper as Current Collectors for Secondary Li-ion Batteries. Nanotechnology Reviews, 2019, 8, 18-23.	5.8	50
29	Effect of nitrogen doping in the few layer graphene cathode of an aluminum ion battery. Chemical Physics Letters, 2019, 733, 136669.	2.6	6
30	Impact of oxygen plasma treatment on carrier transport and molecular adsorption in graphene. Nanoscale, 2019, 11, 11145-11151.	5.6	20
31	Thermoelectric Figure-of-Merit of Fully Dense Single-Crystalline SnSe. ACS Omega, 2019, 4, 5442-5450.	3.5	40
32	Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. ACS Applied Materials & amp; Interfaces, 2019, 11, 16006-16017.	8.0	58
33	Analytical solution of the finite-length Kitaev chain coupled to a quantum dot. Physical Review B, 2019, 99, .	3.2	9

34	Manipulating Charge Transfer from Core to Shell in CdSe/CdS/Au Heterojunction Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 48551-48555.	8.0
35	Bucky-Si-Bucky Sandwiched Structured Anode for Li-Ion Battery. ECS Meeting Abstracts, 2019, , .	0.0

36 (Invited) Role of Anharmonicity on Thermoelectric Properties of Fully Dense Single-Crystalline Snse. ECS Meeting Abstracts, 2019, , .

0.0 0

7

#	Article	IF	CITATIONS
37	Carbon-Based Air-Cathodes for Hydrogen Peroxide Production in Microbial Fuel Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
38	A Versatile Carbon Nanotube-Based Scalable Approach for Improving Interfaces in Li-Ion Battery Electrodes. ACS Omega, 2018, 3, 4502-4508.	3.5	14
39	Carrier Transport Dynamics in High Speed Black Phosphorus Photodetectors. ACS Photonics, 2018, 5, 1412-1417.	6.6	15
40	Saturable Absorption in 2D Ti ₃ C ₂ MXene Thin Films for Passive Photonic Diodes. Advanced Materials, 2018, 30, 1705714.	21.0	332
41	Polymer-Derived Silicon Oxycarbide Ceramics as Promising Next-Generation Sustainable Thermoelectrics. ACS Applied Materials & Interfaces, 2018, 10, 2236-2241.	8.0	29
42	A low-cost approach for measuring electrical load currents in triboelectric nanogenerators. Nanotechnology Reviews, 2018, 7, 149-156.	5.8	45
43	Increase in the reduction potential of uranyl upon interaction with graphene oxide surfaces. Physical Chemistry Chemical Physics, 2018, 20, 1752-1760.	2.8	14
44	Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy, 2018, 44, 103-110.	16.0	273
45	A Wireless Triboelectric Nanogenerator. Advanced Energy Materials, 2018, 8, 1702736.	19.5	100
46	Terahertz Spectroscopy of 2D Materials. , 2018, , .		1
47	Optimizing thermal conduction in bulk polycrystalline SrTiO3â [~] î [~] ceramics via oxygen non-stoichiometry. MRS Communications, 2018, 8, 1470-1476.	1.8	9
48	Sub-50 picosecond to microsecond carrier transport dynamics in pentacene thin films. Applied Physics Letters, 2018, 113, 183509.	3.3	8
49	Phonon anharmonicity in single-crystalline SnSe. Physical Review B, 2018, 98, .	3.2	76
50	Time-order Phonon Scattering Processes are Responsible for the Asymmetric G* Raman Band in Graphene. Recent Patents on Materials Science, 2018, 11, 24-32.	0.5	2
51	Room Temperature Resonant Ultrasound Spectroscopy of Single Crystalline SnSe. ACS Applied Energy Materials, 2018, 1, 6123-6128.	5.1	21
52	Self-powered Flexible Strain Sensor with Graphene/P(VDF-TrFE) Heterojunction. , 2018, , .		0
53	Enhanced supercapacitor performance with binder-free helically coiled carbon nanotube electrodes. Carbon, 2018, 140, 377-384.	10.3	18

#	Article	IF	CITATIONS
55	P(VDF-TrFE) Film on PDMS Substrate for Energy Harvesting Applications. Applied Sciences (Switzerland), 2018, 8, 213.	2.5	51
56	Equilibrium and non-equilibrium free carrier dynamics in 2D Ti ₃ C ₂ T _{ <i>x</i>} MXenes: THz spectroscopy study. 2D Materials, 2018, 5, 035043.	4.4	53
57	Impact absorption properties of carbon fiber reinforced bucky sponges. Nanotechnology, 2017, 28, 184002.	2.6	3
58	Facile and robust triboelectric nanogenerators assembled using off-the-shelf materials. Nano Energy, 2017, 35, 263-270.	16.0	42
59	A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries. Nano Energy, 2017, 39, 69-76.	16.0	89
60	An Iodine Quantum Dots Based Rechargeable Sodium–Iodine Battery. Advanced Energy Materials, 2017, 7, 1601885.	19.5	104
61	Warming and elevated CO2 alter the suberin chemistry in roots of photosynthetically divergent grass species. AoB PLANTS, 2017, 9, .	2.3	15
62	A micro-Raman study of exfoliated few-layered n-type Bi2 Te2.7Se0.3. Scientific Reports, 2017, 7, 16535.	3.3	20
63	Defectâ€Engineered Graphene for Highâ€Energy―and Highâ€Powerâ€Density Supercapacitor Devices. Advance Materials, 2016, 28, 7185-7192.	ed 21.0	235
64	Synthesis and characterization of Ar-annealed zinc oxide nanostructures. AIP Advances, 2016, 6, .	1.3	2
65	Bacteria Absorption-Based Mn ₂ P ₂ O ₇ –Carbon@Reduced Graphene Oxides for High-Performance Lithium-Ion Battery Anodes. ACS Nano, 2016, 10, 5516-5524.	14.6	81
66	Photoresponse of a Single Y-Junction Carbon Nanotube. ACS Applied Materials & Interfaces, 2016, 8, 19024-19030.	8.0	8
67	The intrinsic thermal conductivity of SnSe. Nature, 2016, 539, E1-E2.	27.8	140
68	Tuning the electronic structure of graphene through nitrogen doping: experiment and theory. RSC Advances, 2016, 6, 56721-56727.	3.6	21
69	A facile and scalable approach to fabricating free-standing polymer—Carbon nanotube composite electrodes. Synthetic Metals, 2016, 215, 35-40.	3.9	16
70	Shape-controlled carbon nanotube architectures for thermal management in aerospace applications. MRS Bulletin, 2015, 40, 850-855.	3.5	2
71	Thermoelectric properties of spark plasma sintered lead telluride nanocubes. Journal of Materials Research, 2015, 30, 2638-2648.	2.6	12
72	Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth. Scientific World Journal, The, 2015, 2015, 1-9.	2.1	39

#	Article	IF	CITATIONS
73	Surface plasmon coupled emission as a novel analytical platform for the sensitive detection of cysteine. Nanotechnology Reviews, 2015, 4, 393-400.	5.8	7
74	Energy and our future: a perspective from the Clemson Nanomaterials Center. Nanotechnology Reviews, 2015, 4, .	5.8	3
75	Synthesis and superconductivity in spark plasma sintered pristine and graphene-doped FeSe0.5Te0.5. Nanotechnology Reviews, 2015, 4, .	5.8	3
76	Frontiers in nanoscience, technology and applications. Nanotechnology Reviews, 2015, 4, .	5.8	0
77	Selfâ€Assembled Recyclable Hierarchical Bucky Aerogels. Advanced Engineering Materials, 2015, 17, 990-994.	3.5	5
78	Dopant-configuration controlled carrier scattering in graphene. RSC Advances, 2015, 5, 59556-59563.	3.6	15
79	Anomalous impact and strain responses in helical carbon nanotube foams. RSC Advances, 2015, 5, 29306-29311.	3.6	11
80	Modulation of the Electrostatic and Quantum Capacitances of Few Layered Graphenes through Plasma Processing. Nano Letters, 2015, 15, 3067-3072.	9.1	58
81	Influence of carbon nanomaterial defects on the formation of protein corona. RSC Advances, 2015, 5, 82395-82402.	3.6	32
82	Formation of a Protein Corona on Silver Nanoparticles Mediates Cellular Toxicity via Scavenger Receptors. Toxicological Sciences, 2015, 143, 136-146.	3.1	125
83	Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors. Applied Physics Letters, 2014, 105, .	3.3	42
84	Illuminating nano-bio interactions: A spectroscopic perspective. MRS Bulletin, 2014, 39, 990-995.	3.5	3
85	Direct measurement of shear properties of microfibers. Review of Scientific Instruments, 2014, 85, 095118.	1.3	13
86	Second- and Third-Order Elastic Constants of Filaments of HexTow® IM7 Carbon Fiber. Journal of Materials Engineering and Performance, 2014, 23, 685-692.	2.5	7
87	Gold Decorated Graphene by Laser Ablation for Efficient Electrocatalytic Oxidation of Methanol and Ethanol. Electroanalysis, 2014, 26, 1850-1857.	2.9	24
88	Systemic Administration of Polymerâ€Coated Nanoâ€Graphene to Deliver Drugs to Glioblastoma. Particle and Particle Systems Characterization, 2014, 31, 886-894.	2.3	36
89	Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: A surfactant free laser ablation approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 365-371.	3.9	28
90	Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors. Nano Energy, 2014, 8, 9-16.	16.0	54

#	Article	IF	CITATIONS
91	Mechanical Resonances of Helically Coiled Carbon Nanowires. Scientific Reports, 2014, 4, 5542.	3.3	12
92	Multifunctional Polymerâ€Coated Carbon Nanotubes for Safe Drug Delivery. Particle and Particle Systems Characterization, 2013, 30, 365-373.	2.3	56
93	Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device. Nano Letters, 2013, 13, 5771-5776.	9.1	64
94	Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type Bi2Te3. Scientific Reports, 2013, 3, 3212.	3.3	107
95	Enhancement of Thermoelectric Performance of Ballâ€Milled Bismuth Due to Sparkâ€Plasmaâ€Sinteringâ€Induced Interface Modifications. Advanced Materials, 2013, 25, 1033-1037.	21.0	35
96	Evidence for Edgeâ€ S tate Photoluminescence in Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 5062-5065.	14.9	113
97	Graphene coatings for enhanced hemo-compatibility of nitinol stents. RSC Advances, 2013, 3, 1660-1665.	3.6	71
98	Modeling High Energy Density Electrical Inductors Operating at THz Frequencies Based on Coiled Carbon Nanotubes. IEEE Electron Device Letters, 2013, 34, 807-809.	3.9	7
99	Graphene: Evidence for Edgeâ€State Photoluminescence in Graphene Quantum Dots (Adv. Funct. Mater.) Tj ETC	2q111,8.78	4314 rgBT
100	Fundamental mechanism for electrically actuated mechanical resonances in ZnO nanowhiskers. Physical Review B, 2012, 86, .	3.2	3
101	Thione–gold nanoparticles interactions: Vroman-like effect, self-assembly and sensing. Journal of Materials Chemistry, 2012, 22, 22866.	6.7	19
102	PAMAM dendrimer for mitigating humic foulant. RSC Advances, 2012, 2, 7997.	3.6	17
103	Spectroscopic investigation of nitrogen doped graphene. Applied Physics Letters, 2012, 101, .	3.3	52
104	Toward a carbon nanotube anode gas-filled radiation detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652, 310-314.	1.6	1
105	Annealing of silicon optical fibers. Journal of Applied Physics, 2011, 110, .	2.5	41
106	Biomolecular sensing using gold nanoparticle–coated ZnO nanotetrapods. Journal of Materials Research, 2011, 26, 2328-2333.	2.6	5
107	Curvature-induced Symmetry Lowering and Anomalous Dispersion of Phonons in Single-Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2011, 1284, 143.	0.1	0
108	ELECTRICAL TRANSPORT PROPERTIES OF SINGLE-WALLED CARBON NANOTUBE BUNDLES TREATED WITH BORIC ACID. Nano, 2011, 06, 337-341.	1.0	4

#	Article	IF	CITATIONS
109	Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes. Physics of Plasmas, 2011, 18, 014502.	1.9	34
110	Surface roughness-aided hard X-ray emission from carbon nanotubes. Pramana - Journal of Physics, 2010, 75, 1197-1202.	1.8	1
111	Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon, 2010, 48, 756-762.	10.3	56
112	The influence of coiled nanostructure on the enhancement of dielectric constants and electric shielding efficiency in polymer composites. Applied Physics Letters, 2010, 96, 043115.	3.3	29
113	Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper. Journal of Physics Condensed Matter, 2010, 22, 334215.	1.8	37
114	Carbon nanotube based coils and helices: (Synthesis and applications in electronic, electromagnetic,) Tj ETQq0 0	0 rgBT /C	Overlock 10 Tf
115	Evidence for substitutional boron in doped single-walled carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	60
116	A comparative study of single- and multiwalled carbon nanotube sensitivity to ammonia. Journal of Applied Physics, 2009, 105, .	2.5	11
117	Boron, nitrogen and phosphorous substitutionally doped singleâ€wall carbon nanotubes studied by resonance Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2009, 246, 2432-2435.	1.5	21
118	NONLINEAR OPTICAL TRANSMISSION OF SURFACE-MODIFIED NICKEL SULFIDE NANOPARTICLES: SATURATION OF ABSORPTION AND OPTICAL LIMITING. Nano, 2008, 03, 161-167.	1.0	8
119	The role of Î ³ -iron nanoparticulates in the growth of carbon nanotubes. Applied Physics Letters, 2008, 93, .	3.3	11
120	Synthesis and Optical Properties of 1D Bismuth Nanorods. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	0
121	A plausible mechanism for the evolution of helical forms in nanostructure growth. Journal of Applied Physics, 2007, 101, 094307.	2.5	56
122	Electrical applications for novel carbon nanotube morphologies: Does function follow shape?. Jom, 2007, 59, 33-38.	1.9	4
123	Synthesis of low-melting metal oxide and sulfide nanowires and nanobelts. Journal of Electronic Materials, 2006, 35, 941-946.	2.2	21
124	Characterizing field emission from individual carbon nanotubes at small distances. Journal of Vacuum Science & Technology B, 2006, 24, 1081.	1.3	33
125	Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Applied Physics Letters, 2006, 89, 143118.	3.3	39
126	Three-way electrical gating characteristics of metallic Y-junction carbon nanotubes. Applied Physics Letters, 2006, 88, 243113.	3.3	18

#	Article	IF	CITATIONS
127	Thermoelectric properties of doped titanium disulfides. Applied Physics Letters, 2006, 88, 262106.	3.3	11
128	Electrical detection of oscillations in microcantilevers and nanocantilevers. Review of Scientific Instruments, 2006, 77, 073907.	1.3	28
129	Impact response by a foamlike forest of coiled carbon nanotubes. Journal of Applied Physics, 2006, 100, 064309.	2.5	72
130	Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors. Chemical Physics Letters, 2005, 412, 269-273.	2.6	91
131	Coupling of photon energy via a multiwalled carbon nanotube array. Applied Physics Letters, 2005, 87, 173102.	3.3	13
132	Diffusion of carbon nanotubes with single-molecule fluorescence microscopy. Journal of Applied Physics, 2004, 96, 6772-6775.	2.5	25
133	Single-molecule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nanotubes. Applied Physics Letters, 2004, 85, 4228-4230.	3.3	28
134	Growth, Nitrogen Doping and Characterization of Isolated Single-Wall Carbon Nanotubes using Liquid Precursors. Materials Research Society Symposia Proceedings, 2004, 858, 146.	0.1	0
135	Mechanical Properties of CVD Grown Multi-walled Carbon Nanotubes (MWNTs). Materials Research Society Symposia Proceedings, 2004, 858, 243.	0.1	1
136	Resonance Raman Spectroscopy to Study and Characterize Defects on Carbon Nanotubes and other Nano-Graphite Systems. Materials Research Society Symposia Proceedings, 2004, 858, 1.	0.1	1
137	Bulk Synthesis of Helical Coiled Carbon Nanostructures. Materials Research Society Symposia Proceedings, 2004, 858, 158.	0.1	4
138	Lithium insertion into chemically etched multi-walled carbon nanotubes. Journal of Solid State Electrochemistry, 2004, 8, 908-913.	2.5	22
139	Polyaniline/carbon nanotube composite Schottky contacts. Polymer Engineering and Science, 2004, 44, 28-33.	3.1	26
140	RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 2473-2477.	9.1	302
141	Controlled Growth of Y-Junction Nanotubes Using Ti-Doped Vapor Catalyst. Nano Letters, 2004, 4, 213-217.	9.1	95
142	Structural systematics in boron-doped single wall carbon nanotubes. Journal of Materials Chemistry, 2004, 14, 669.	6.7	123
143	Thermal Transport During Nanoscale Machining by Field Emission of Electrons from Carbon Nanotubes. Journal of Heat Transfer, 2003, 125, 546-546.	2.1	2
144	Electronic Device Fabricated From Polyaniline / Single walled Carbon Nanotubes Composite. Materials Research Society Symposia Proceedings, 2003, 772, 431.	0.1	8

#	Article	IF	CITATIONS
145	Raman scattering in doped transition metal pentatellurides. Journal of Applied Physics, 2002, 92, 2524-2527.	2.5	9
146	Carbon-nanotube-based resonant-circuit sensor for ammonia. Applied Physics Letters, 2002, 80, 4632-4634.	3.3	302
147	Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Physical Review B, 2002, 66, .	3.2	250
148	Effect of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes. Physical Review Letters, 2001, 86, 3895-3898.	7.8	340
149	Micro-Raman spectroscopy of isolated single wall carbon nanotube. AIP Conference Proceedings, 2001, , .	0.4	0
150	Micro-Raman investigation of aligned single-wall carbon nanotubes. Physical Review B, 2001, 63, .	3.2	36
151	Molecular Functionalization of Carbon Nanotubes and Use as Substrates for Neuronal Growth. Journal of Molecular Neuroscience, 2000, 14, 175-182.	2.3	596
152	Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes. Physical Review Letters, 1998, 80, 3779-3782.	7.8	774
153	Chemical Attachment of Organic Functional Groups to Single-walled Carbon Nanotube Material. Journal of Materials Research, 1998, 13, 2423-2431.	2.6	297
154	Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes. Journal of Materials Research, 1998, 13, 2405-2411.	2.6	69
155	Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes. Journal of Materials Research, 1998, 13, 2405-2411.	2.6	10
156	Purification of Single-Wall Carbon Nanotubes by Microfiltration. Journal of Physical Chemistry B, 1997, 101, 8839-8842.	2.6	331
157	Infrared and Raman studies of pressure-polymerizedC60s. Physical Review B, 1997, 55, 4766-4773.	3.2	199
158	Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388, 257-259.	27.8	1,212
159	Raman Scattering Investigation of Superconductivity in Si46 Clathrates. Materials Research Society Symposia Proceedings, 1996, 452, 231.	0.1	0
160	CVD-Growth of Thin-Film Layered Se-Carbon Compounds. Materials Research Society Symposia Proceedings, 1996, 453, 83.	0.1	0
161	Laser desorption mass spectrometry of photopolymerized fullerene (C60) films. The Journal of Physical Chemistry, 1993, 97, 5036-5039.	2.9	81
162	Photoinduced Polymerization of Solid C ₆₀ Films. Science, 1993, 259, 955-957.	12.6	1,109

#	Article	IF	CITATIONS
163	Photoassisted oxygen doping of C ₆₀ films. Journal of Materials Research, 1993, 8, 2277-2281.	2.6	54
164	Observation of higher-order infrared modes in solidC60films. Physical Review B, 1993, 48, 11375-11380.	3.2	106
165	Optical Properties of C60 and M6C60 (M=K, Rb, Cs) films. Materials Research Society Symposia Proceedings, 1992, 247, 367.	0.1	Ο
166	Interband dielectric function ofC60andM6C60(M=K,Rb,Cs). Physical Review B, 1992, 45, 14396-14399.	3.2	67
167	Photoâ€assisted structural transition and oxygen diffusion in solid C60films. Applied Physics Letters, 1992, 60, 2871-2873.	3.3	157
168	Ellipsometric determination of the optical constants of C60(Buckminsterfullerene) films. Applied Physics Letters, 1991, 59, 2678-2680.	3.3	246
169	Optical properties of chemical-vapor-deposited diamond films. Journal of Materials Research, 1990, 5, 811-817.	2.6	63