Apparao M Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3089701/publications.pdf

Version: 2024-02-01

169 papers

12,316 citations

53 h-index 108 g-index

173 all docs

173 docs citations

173 times ranked

13838 citing authors

#	Article	IF	CITATIONS
1	Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388, 257-259.	27.8	1,212
2	Photoinduced Polymerization of Solid C ₆₀ Films. Science, 1993, 259, 955-957.	12.6	1,109
3	Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes. Physical Review Letters, 1998, 80, 3779-3782.	7.8	774
4	Molecular Functionalization of Carbon Nanotubes and Use as Substrates for Neuronal Growth. Journal of Molecular Neuroscience, 2000, 14, 175-182.	2.3	596
5	Effect of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes. Physical Review Letters, 2001, 86, 3895-3898.	7.8	340
6	Saturable Absorption in 2D Ti ₃ C ₂ MXene Thin Films for Passive Photonic Diodes. Advanced Materials, 2018, 30, 1705714.	21.0	332
7	Purification of Single-Wall Carbon Nanotubes by Microfiltration. Journal of Physical Chemistry B, 1997, 101, 8839-8842.	2.6	331
8	Carbon-nanotube-based resonant-circuit sensor for ammonia. Applied Physics Letters, 2002, 80, 4632-4634.	3.3	302
9	RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 2473-2477.	9.1	302
10	Chemical Attachment of Organic Functional Groups to Single-walled Carbon Nanotube Material. Journal of Materials Research, 1998, 13, 2423-2431.	2.6	297
11	Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nature Sustainability, 2022, 5, 225-234.	23.7	293
12	Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy, 2018, 44, 103-110.	16.0	273
13	Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Physical Review B, 2002, 66, .	3.2	250
14	Ellipsometric determination of the optical constants of C60(Buckminsterfullerene) films. Applied Physics Letters, 1991, 59, 2678-2680.	3.3	246
15	Defectâ€Engineered Graphene for Highâ€Energy―and Highâ€Powerâ€Density Supercapacitor Devices. Advanced Materials, 2016, 28, 7185-7192.	d 21.0	235
16	Infrared and Raman studies of pressure-polymerizedC60s. Physical Review B, 1997, 55, 4766-4773.	3.2	199
17	Cell-like-carbon-micro-spheres for robust potassium anode. National Science Review, 2021, 8, nwaa276.	9.5	166
18	Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy and Environmental Science, 2021, 14, 965-974.	30.8	164

#	Article	IF	Citations
19	Photoâ€assisted structural transition and oxygen diffusion in solid C60films. Applied Physics Letters, 1992, 60, 2871-2873.	3.3	157
20	The intrinsic thermal conductivity of SnSe. Nature, 2016, 539, E1-E2.	27.8	140
21	Prospects of Electrode Materials and Electrolytes for Practical Potassiumâ€Based Batteries. Small Methods, 2021, 5, e2101131.	8.6	129
22	Formation of a Protein Corona on Silver Nanoparticles Mediates Cellular Toxicity via Scavenger Receptors. Toxicological Sciences, 2015, 143, 136-146.	3.1	125
23	Structural systematics in boron-doped single wall carbon nanotubes. Journal of Materials Chemistry, 2004, 14, 669.	6.7	123
24	Cyclic-anion salt for high-voltage stable potassium-metal batteries. National Science Review, 2022, 9, .	9.5	123
25	Evidence for Edgeâ€State Photoluminescence in Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 5062-5065.	14.9	113
26	Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type Bi2Te3. Scientific Reports, 2013, 3, 3212.	3.3	107
27	Observation of higher-order infrared modes in solidC60films. Physical Review B, 1993, 48, 11375-11380.	3.2	106
28	An Iodine Quantum Dots Based Rechargeable Sodium–Iodine Battery. Advanced Energy Materials, 2017, 7, 1601885.	19.5	104
29	A Wireless Triboelectric Nanogenerator. Advanced Energy Materials, 2018, 8, 1702736.	19.5	100
30	Controlled Growth of Y-Junction Nanotubes Using Ti-Doped Vapor Catalyst. Nano Letters, 2004, 4, 213-217.	9.1	95
31	Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors. Chemical Physics Letters, 2005, 412, 269-273.	2.6	91
32	A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries. Nano Energy, 2017, 39, 69-76.	16.0	89
33	Regulating Solvent Molecule Coordination with KPF ₆ for Superstable Graphite Potassium Anodes. ACS Nano, 2021, 15, 9167-9175.	14.6	89
34	Unleashing the potential of Ti 2 CT x MXene as a pulse modulator for mid-infrared fiber lasers. 2D Materials, 2019, 6, 045038.	4.4	83
35	Laser desorption mass spectrometry of photopolymerized fullerene (C60) films. The Journal of Physical Chemistry, 1993, 97, 5036-5039.	2.9	81
36	Bacteria Absorption-Based Mn ₂ P ₂ O ₇ –Carbon@Reduced Graphene Oxides for High-Performance Lithium-Ion Battery Anodes. ACS Nano, 2016, 10, 5516-5524.	14.6	81

#	Article	IF	Citations
37	Phonon anharmonicity in single-crystalline SnSe. Physical Review B, 2018, 98, .	3.2	76
38	Impact response by a foamlike forest of coiled carbon nanotubes. Journal of Applied Physics, 2006, 100, 064309.	2.5	72
39	Graphene coatings for enhanced hemo-compatibility of nitinol stents. RSC Advances, 2013, 3, 1660-1665.	3.6	71
40	Simultaneous Suppression of the Dendrite Formation and Shuttle Effect in a Lithium–Sulfur Battery by Bilateral Solid Electrolyte Interface. Advanced Science, 2018, 5, 1700934.	11.2	70
41	Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries., 2020, 2, 853-860.		70
42	Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes. Journal of Materials Research, 1998, 13, 2405-2411.	2.6	69
43	Interband dielectric function of C60 and M6C60 (M=K,Rb,Cs). Physical Review B, 1992, 45, 14396-14399.	3.2	67
44	Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device. Nano Letters, 2013, 13, 5771-5776.	9.1	64
45	Optical properties of chemical-vapor-deposited diamond films. Journal of Materials Research, 1990, 5, 811-817.	2.6	63
46	Evidence for substitutional boron in doped single-walled carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	60
47	Artificial SEI for Superhighâ€Performance Kâ€Graphite Anode. Advanced Science, 2021, 8, 2003639.	11.2	59
48	Modulation of the Electrostatic and Quantum Capacitances of Few Layered Graphenes through Plasma Processing. Nano Letters, 2015, 15, 3067-3072.	9.1	58
49	Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. ACS Applied Materials & Sensor. ACS ACS Applied Materials & Sensor. ACS Applied Mater	8.0	58
50	A plausible mechanism for the evolution of helical forms in nanostructure growth. Journal of Applied Physics, 2007, 101, 094307.	2.5	56
51	Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon, 2010, 48, 756-762.	10.3	56
52	Multifunctional Polymerâ€Coated Carbon Nanotubes for Safe Drug Delivery. Particle and Particle Systems Characterization, 2013, 30, 365-373.	2.3	56
53	Photoassisted oxygen doping of C ₆₀ films. Journal of Materials Research, 1993, 8, 2277-2281.	2.6	54
54	Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors. Nano Energy, 2014, 8, 9-16.	16.0	54

#	Article	IF	CITATIONS
55	Equilibrium and non-equilibrium free carrier dynamics in 2D Ti ₃ C ₂ T _{<i>x</i>} MXenes: THz spectroscopy study. 2D Materials, 2018, 5, 035043.	4.4	53
56	Spectroscopic investigation of nitrogen doped graphene. Applied Physics Letters, 2012, 101, .	3.3	52
57	P(VDF-TrFE) Film on PDMS Substrate for Energy Harvesting Applications. Applied Sciences (Switzerland), 2018, 8, 213.	2.5	51
58	Carbon Nanotubes Coated Paper as Current Collectors for Secondary Li-ion Batteries. Nanotechnology Reviews, 2019, 8, 18-23.	5.8	50
59	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
60	A low-cost approach for measuring electrical load currents in triboelectric nanogenerators. Nanotechnology Reviews, 2018, 7, 149-156.	5.8	45
61	Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors. Applied Physics Letters, 2014, 105, .	3.3	42
62	Facile and robust triboelectric nanogenerators assembled using off-the-shelf materials. Nano Energy, 2017, 35, 263-270.	16.0	42
63	Annealing of silicon optical fibers. Journal of Applied Physics, 2011, 110, .	2.5	41
64	Thermoelectric Figure-of-Merit of Fully Dense Single-Crystalline SnSe. ACS Omega, 2019, 4, 5442-5450.	3.5	40
65	Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Applied Physics Letters, 2006, 89, 143118.	3.3	39
66	Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth. Scientific World Journal, The, 2015, 2015, 1-9.	2.1	39
67	Ti ₂ CT _{<i>x</i>} MXeneâ€based allâ€optical modulator. InformaÄnÃ-Materiály, 2020, 2, 601-609.	17.3	39
68	Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper. Journal of Physics Condensed Matter, 2010, 22, 334215.	1.8	37
69	Micro-Raman investigation of aligned single-wall carbon nanotubes. Physical Review B, 2001, 63, .	3.2	36
70	Systemic Administration of Polymerâ€Coated Nanoâ€Graphene to Deliver Drugs to Glioblastoma. Particle and Particle Systems Characterization, 2014, 31, 886-894.	2.3	36
71	High <i>zT</i> and Its Origin in Sbâ€doped GeTe Single Crystals. Advanced Science, 2020, 7, 2002494.	11.2	36
72	Yolk–Shell P3â€Type K _{0.5} [Mn _{0.85} Ni _{0.1} Co _{0.05}]O ₂ : A Lowâ€Cost Cathode for Potassiumâ€lon Batteries. Energy and Environmental Materials, 2022, 5, 261-269.	12.8	36

#	Article	IF	CITATIONS
73	Enhancement of Thermoelectric Performance of Ballâ€Milled Bismuth Due to Sparkâ€Plasmaâ€Sinteringâ€Induced Interface Modifications. Advanced Materials, 2013, 25, 1033-1037.	21.0	35
74	Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes. Physics of Plasmas, 2011, 18, 014502.	1.9	34
75	Characterizing field emission from individual carbon nanotubes at small distances. Journal of Vacuum Science & Technology B, 2006, 24, 1081.	1.3	33
76	Influence of carbon nanomaterial defects on the formation of protein corona. RSC Advances, 2015, 5, 82395-82402.	3.6	32
77	The influence of coiled nanostructure on the enhancement of dielectric constants and electromagnetic shielding efficiency in polymer composites. Applied Physics Letters, 2010, 96, 043115.	3.3	29
78	Polymer-Derived Silicon Oxycarbide Ceramics as Promising Next-Generation Sustainable Thermoelectrics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2236-2241.	8.0	29
79	Single-molecule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nanotubes. Applied Physics Letters, 2004, 85, 4228-4230.	3.3	28
80	Electrical detection of oscillations in microcantilevers and nanocantilevers. Review of Scientific Instruments, 2006, 77, 073907.	1.3	28
81	Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: A surfactant free laser ablation approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 365-371.	3.9	28
82	The correlation between phase transition and photoluminescence properties of CsPbX ₃ (X) Tj ETQ	q0	T /Qyerlock 10
83	Polyaniline/carbon nanotube composite Schottky contacts. Polymer Engineering and Science, 2004, 44, 28-33.	3.1	26
84	Diffusion of carbon nanotubes with single-molecule fluorescence microscopy. Journal of Applied Physics, 2004, 96, 6772-6775.	2.5	25
85	Gold Decorated Graphene by Laser Ablation for Efficient Electrocatalytic Oxidation of Methanol and Ethanol. Electroanalysis, 2014, 26, 1850-1857.	2.9	24
86	Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties. Nanoscale Advances, 2020, 2, 2507-2513.	4.6	24
87	Lithium insertion into chemically etched multi-walled carbon nanotubes. Journal of Solid State Electrochemistry, 2004, 8, 908-913.	2.5	22
88	Synthesis of low-melting metal oxide and sulfide nanowires and nanobelts. Journal of Electronic Materials, 2006, 35, 941-946.	2.2	21
89	Boron, nitrogen and phosphorous substitutionally doped singleâ€wall carbon nanotubes studied by resonance Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2009, 246, 2432-2435.	1.5	21
90	Tuning the electronic structure of graphene through nitrogen doping: experiment and theory. RSC Advances, 2016, 6, 56721-56727.	3.6	21

#	Article	IF	Citations
91	Room Temperature Resonant Ultrasound Spectroscopy of Single Crystalline SnSe. ACS Applied Energy Materials, 2018, 1, 6123-6128.	5.1	21
92	A micro-Raman study of exfoliated few-layered n-type Bi2 Te2.7Se0.3. Scientific Reports, 2017, 7, 16535.	3.3	20
93	Impact of oxygen plasma treatment on carrier transport and molecular adsorption in graphene. Nanoscale, 2019, 11, 11145-11151.	5.6	20
94	Thione–gold nanoparticles interactions: Vroman-like effect, self-assembly and sensing. Journal of Materials Chemistry, 2012, 22, 22866.	6.7	19
95	Three-way electrical gating characteristics of metallic Y-junction carbon nanotubes. Applied Physics Letters, 2006, 88, 243113.	3.3	18
96	Enhanced supercapacitor performance with binder-free helically coiled carbon nanotube electrodes. Carbon, 2018, 140, 377-384.	10.3	18
97	PAMAM dendrimer for mitigating humic foulant. RSC Advances, 2012, 2, 7997.	3.6	17
98	A facile and scalable approach to fabricating free-standing polymerâ€"Carbon nanotube composite electrodes. Synthetic Metals, 2016, 215, 35-40.	3.9	16
99	Graphene Foam Current Collector for High-Areal-Capacity Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2021, 4, 53-60.	5.0	16
100	Dopant-configuration controlled carrier scattering in graphene. RSC Advances, 2015, 5, 59556-59563.	3.6	15
101	Warming and elevated CO2 alter the suberin chemistry in roots of photosynthetically divergent grass species. AoB PLANTS, 2017, 9, .	2.3	15
102	Carrier Transport Dynamics in High Speed Black Phosphorus Photodetectors. ACS Photonics, 2018, 5, 1412-1417.	6.6	15
103	Fullereneâ€Enhanced Triboelectric Nanogenerators. Advanced Materials Technologies, 2020, 5, 2000295.	5.8	15
104	A Versatile Carbon Nanotube-Based Scalable Approach for Improving Interfaces in Li-Ion Battery Electrodes. ACS Omega, 2018, 3, 4502-4508.	3.5	14
105	Increase in the reduction potential of uranyl upon interaction with graphene oxide surfaces. Physical Chemistry Chemical Physics, 2018, 20, 1752-1760.	2.8	14
106	Coupling of photon energy via a multiwalled carbon nanotube array. Applied Physics Letters, 2005, 87, 173102.	3.3	13
107	Direct measurement of shear properties of microfibers. Review of Scientific Instruments, 2014, 85, 095118.	1.3	13
108	Thermoelectric properties of spark plasma sintered lead telluride nanocubes. Journal of Materials Research, 2015, 30, 2638-2648.	2.6	12

#	Article	IF	Citations
109	Mechanical Resonances of Helically Coiled Carbon Nanowires. Scientific Reports, 2014, 4, 5542.	3.3	12
110	Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. ChemPhysChem, 2022, 23, .	2.1	12
111	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	12
112	Thermoelectric properties of doped titanium disulfides. Applied Physics Letters, 2006, 88, 262106.	3.3	11
113	The role of \hat{I}^3 -iron nanoparticulates in the growth of carbon nanotubes. Applied Physics Letters, 2008, 93, .	3.3	11
114	A comparative study of single- and multiwalled carbon nanotube sensitivity to ammonia. Journal of Applied Physics, 2009, 105, .	2.5	11
115	Anomalous impact and strain responses in helical carbon nanotube foams. RSC Advances, 2015, 5, 29306-29311.	3.6	11
116	Three-Dimensional Si Anodes with Fast Diffusion, High Capacity, High Rate Capability, and Long Cycle Life. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34763-34770.	8.0	11
117	Anisotropic elasticity drives negative thermal expansion in monocrystalline SnSe. Physical Review B, 2021, 103, .	3.2	11
118	In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. Nature Communications, 2021, 12, 1636.	12.8	11
119	Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes. Journal of Materials Research, 1998, 13, 2405-2411.	2.6	10
120	Raman scattering in doped transition metal pentatellurides. Journal of Applied Physics, 2002, 92, 2524-2527.	2.5	9
121	Optimizing thermal conduction in bulk polycrystalline SrTiO3 \hat{a} °l´ ceramics via oxygen non-stoichiometry. MRS Communications, 2018, 8, 1470-1476.	1.8	9
122	Analytical solution of the finite-length Kitaev chain coupled to a quantum dot. Physical Review B, 2019, 99, .	3.2	9
123	Strategies for improving rechargeable lithium-ion batteries: From active materials to CO ₂ emissions. Nanotechnology Reviews, 2021, 10, 1993-2026.	5.8	9
124	NONLINEAR OPTICAL TRANSMISSION OF SURFACE-MODIFIED NICKEL SULFIDE NANOPARTICLES: SATURATION OF ABSORPTION AND OPTICAL LIMITING. Nano, 2008, 03, 161-167.	1.0	8
125	Photoresponse of a Single Y-Junction Carbon Nanotube. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19024-19030.	8.0	8
126	Sub-50 picosecond to microsecond carrier transport dynamics in pentacene thin films. Applied Physics Letters, 2018, 113, 183509.	3.3	8

#	Article	IF	Citations
127	Electronic Device Fabricated From Polyaniline / Single walled Carbon Nanotubes Composite. Materials Research Society Symposia Proceedings, 2003, 772, 431.	0.1	8
128	Modeling High Energy Density Electrical Inductors Operating at THz Frequencies Based on Coiled Carbon Nanotubes. IEEE Electron Device Letters, 2013, 34, 807-809.	3.9	7
129	Second- and Third-Order Elastic Constants of Filaments of HexTow \hat{A}^{\otimes} IM7 Carbon Fiber. Journal of Materials Engineering and Performance, 2014, 23, 685-692.	2.5	7
130	Surface plasmon coupled emission as a novel analytical platform for the sensitive detection of cysteine. Nanotechnology Reviews, 2015, 4, 393-400.	5.8	7
131	Manipulating Charge Transfer from Core to Shell in CdSe/CdS/Au Heterojunction Quantum Dots. ACS Applied Materials & Dots. ACS	8.0	7
132	Effect of nitrogen doping in the few layer graphene cathode of an aluminum ion battery. Chemical Physics Letters, 2019, 733, 136669.	2.6	6
133	Biomolecular sensing using gold nanoparticle–coated ZnO nanotetrapods. Journal of Materials Research, 2011, 26, 2328-2333.	2.6	5
134	Selfâ€Assembled Recyclable Hierarchical Bucky Aerogels. Advanced Engineering Materials, 2015, 17, 990-994.	3.5	5
135	Phonon anharmonicity in binary chalcogenides for efficient energy harvesting. Materials Horizons, 2022, 9, 1602-1622.	12.2	5
136	Bulk Synthesis of Helical Coiled Carbon Nanostructures. Materials Research Society Symposia Proceedings, 2004, 858, 158.	0.1	4
137	Electrical applications for novel carbon nanotube morphologies: Does function follow shape?. Jom, 2007, 59, 33-38.	1.9	4
138	ELECTRICAL TRANSPORT PROPERTIES OF SINGLE-WALLED CARBON NANOTUBE BUNDLES TREATED WITH BORIC ACID. Nano, 2011, 06, 337-341.	1.0	4
139	Fundamental mechanism for electrically actuated mechanical resonances in ZnO nanowhiskers. Physical Review B, 2012, 86, .	3.2	3
140	Illuminating nano-bio interactions: A spectroscopic perspective. MRS Bulletin, 2014, 39, 990-995.	3.5	3
141	Energy and our future: a perspective from the Clemson Nanomaterials Center. Nanotechnology Reviews, 2015, 4, .	5.8	3
142	Synthesis and superconductivity in spark plasma sintered pristine and graphene-doped FeSe0.5Te0.5. Nanotechnology Reviews, 2015, 4, .	5.8	3
143	Impact absorption properties of carbon fiber reinforced bucky sponges. Nanotechnology, 2017, 28, 184002.	2.6	3
144	Thermal Transport During Nanoscale Machining by Field Emission of Electrons from Carbon Nanotubes. Journal of Heat Transfer, 2003, 125, 546-546.	2.1	2

#	Article	IF	Citations
145	Shape-controlled carbon nanotube architectures for thermal management in aerospace applications. MRS Bulletin, 2015, 40, 850-855.	3.5	2
146	Synthesis and characterization of Ar-annealed zinc oxide nanostructures. AIP Advances, 2016, 6, .	1.3	2
147	Time-order Phonon Scattering Processes are Responsible for the Asymmetric G* Raman Band in Graphene. Recent Patents on Materials Science, 2018, 11, 24-32.	0.5	2
148	Generating and Capturing Secondary Hot Carriers in Monolayer Tungsten Dichalcogenides. Journal of Physical Chemistry Letters, 2022, 13, 5703-5710.	4.6	2
149	Mechanical Properties of CVD Grown Multi-walled Carbon Nanotubes (MWNTs). Materials Research Society Symposia Proceedings, 2004, 858, 243.	0.1	1
150	Resonance Raman Spectroscopy to Study and Characterize Defects on Carbon Nanotubes and other Nano-Graphite Systems. Materials Research Society Symposia Proceedings, 2004, 858, 1.	0.1	1
151	Surface roughness-aided hard X-ray emission from carbon nanotubes. Pramana - Journal of Physics, 2010, 75, 1197-1202.	1.8	1
152	Toward a carbon nanotube anode gas-filled radiation detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652, 310-314.	1.6	1
153	Graphene: Evidence for Edgeâ€State Photoluminescence in Graphene Quantum Dots (Adv. Funct. Mater.) Tj ETQ	q1 _{14.} 9.78	43 ₁ 4 rgBT
154	Terahertz Spectroscopy of 2D Materials. , 2018, , .		1
155	Optical Properties of C60 and M6C60 (M=K, Rb, Cs) films. Materials Research Society Symposia Proceedings, 1992, 247, 367.	0.1	0
156	Raman Scattering Investigation of Superconductivity in Si46 Clathrates. Materials Research Society Symposia Proceedings, 1996, 452, 231.	0.1	0
157	CVD-Growth of Thin-Film Layered Se-Carbon Compounds. Materials Research Society Symposia Proceedings, 1996, 453, 83.	0.1	0
158	Micro-Raman spectroscopy of isolated single wall carbon nanotube. AIP Conference Proceedings, 2001, , .	0.4	0
159	Growth, Nitrogen Doping and Characterization of Isolated Single-Wall Carbon Nanotubes using Liquid Precursors. Materials Research Society Symposia Proceedings, 2004, 858, 146.	0.1	0
160	Synthesis and Optical Properties of 1D Bismuth Nanorods. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	0
161	Carbon nanotube based coils and helices: (Synthesis and applications in electronic, electromagnetic,) Tj ETQq $1\ 1$	0.784314	l rgBT /Ove <mark>rl</mark>
162	Curvature-induced Symmetry Lowering and Anomalous Dispersion of Phonons in Single-Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2011, 1284, 143.	0.1	0

#	Article	IF	CITATIONS
163	Frontiers in nanoscience, technology and applications. Nanotechnology Reviews, 2015, 4, .	5.8	O
164	Self-powered Flexible Strain Sensor with Graphene/P(VDF-TrFE) Heterojunction. , 2018, , .		0
165	Impressively printing patterns of gold and silver nanoparticles. Nano Select, 2021, 2, 2407-2418.	3.7	0
166	Bucky-Si-Bucky Sandwiched Structured Anode for Li-Ion Battery. ECS Meeting Abstracts, 2019, , .	0.0	0
167	(Invited) Role of Anharmonicity on Thermoelectric Properties of Fully Dense Single-Crystalline Snse. ECS Meeting Abstracts, 2019, , .	0.0	0
168	Carbon-Based Air-Cathodes for Hydrogen Peroxide Production in Microbial Fuel Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
169	Enhanced Hydrogen Evolution Reaction By Porous Curcumin Enveloped Gold Nanoparticles. ECS Meeting Abstracts, 2021, MA2021-02, 1884-1884.	0.0	0