Maurizio Tomasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3088904/publications.pdf

Version: 2024-02-01

1316 2802 51,007 257 94 citations g-index h-index papers

259 259 259 21761 docs citations times ranked citing authors all docs

224

#	Article	IF	CITATIONS
1	The LSPE-Strip beams. Journal of Instrumentation, 2022, 17, P01028.	1.2	O
2	CMB-S4: Forecasting Constraints on Primordial Gravitational Waves. Astrophysical Journal, 2022, 926, 54.	4.5	79
3	QUBIC V: Cryogenic system design and performance. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 038.	5.4	8
4	QUBIC VII: The feedhorn-switch system of the technological demonstrator. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 040.	5 . 4	6
5	QUBIC I: Overview and science program. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 034.	5 . 4	20
6	Revised planet brightness temperatures using the <i>Planck</i> /LFI 2018 data release. Astronomy and Astrophysics, 2021, 647, A104.	5.1	3
7	The large scale polarization explorer (LSPE) for CMB measurements: performance forecast. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008.	5. 4	27
8	Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB B-modes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 013.	5 . 4	5
9	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	5.1	6,722
10	Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 2020, 199, 1107-1117.	1.4	64
11	The QUBIC instrument for CMB polarization measurements. Journal of Physics: Conference Series, 2020, 1548, 012016.	0.4	2
12	QUBIC: The Q & U Bolometric Interferometer for Cosmology. Journal of Low Temperature Physics, 2020, 199, 482-490.	1.4	8
13	TES Bolometer Arrays for the QUBIC B-Mode CMB Experiment. Journal of Low Temperature Physics, 2020, 199, 955-961.	1.4	6
14	QUBIC: Using NbSi TESs with a Bolometric Interferometer to Characterize the Polarization of the CMB. Journal of Low Temperature Physics, 2020, 200, 363-373.	1.4	4
15	Progress Report on the Large-Scale Polarization Explorer. Journal of Low Temperature Physics, 2020, 200, 374-383.	1.4	16
16	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A11.	5.1	118
17	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A3.	5.1	158

#	Article	IF	CITATIONS
19	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A1.	5.1	804
20	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A4.	5.1	218
21	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A12.	5.1	105
22	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A8.	5.1	400
23	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10.	5.1	1,261
24	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A7.	5.1	172
25	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A9.	5.1	319
26	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A5.	5.1	558
27	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A99.	5.1	4
28	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A100.	5.1	20
29	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 643, A42.	5.1	123
30	Potassium Radioisotope 40 as Component of Mitochondria Physiology: Therapy Proposal for Mitochondrial Disfunction Diseases. Frontiers in Public Health, 2020, 8, 578392.	2.7	0
31	QUBIC: Exploring the Primordial Universe with the Q&U Bolometric Interferometer. Universe, 2019, 5, 42.	2.5	15
32	Convolutional neural networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis. Astronomy and Astrophysics, 2019, 628, A129.	5.1	28
33	Exploring cosmic origins with CORE: Survey requirements and mission design. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 014-014.	5.4	98
34	Exploring cosmic origins with CORE: The instrument. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	5.4	25
35	Exploring cosmic origins with CORE: Inflation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	5.4	75
36	Exploring cosmic origins with CORE: Cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	5.4	73

#	Article	IF	CITATIONS
37	Exploring cosmic origins with CORE: Gravitational lensing of the CMB. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 018-018.	5.4	29
38	Exploring cosmic origins with CORE: Cluster science. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 019-019.	5 . 4	17
39	Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 020-020.	5.4	20
40	Exploring cosmic origins with CORE: Effects of observer peculiar motion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	5.4	18
41	Exploring cosmic origins with CORE: Mitigation of systematic effects. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 022-022.	5.4	14
42	Exploring cosmic origins with CORE: <i>B</i> mode component separation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 023-023.	5.4	44
43	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 619, A94.	5.1	18
44	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 617, A48.	5.1	22
45	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 610, C1.	5.1	5
46	Concept design of the LiteBIRD satellite for CMB B-mode polarization. , 2018, , .		19
47	The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds. , $2018, \ldots$		7
48	Preliminary scanning strategy analysis for the LSPE-STRIP instrument. , 2018, , .		3
49	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51.	5.1	46
50	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 607, A95.	5.1	131
51	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2017, 607, A122.	5.1	24
52	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A140.	5.1	89
53	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A134.	5.1	48
54	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A28.	5.1	134

#	Article	IF	CITATIONS
55	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A7.	5.1	94
56	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A10.	5.1	384
57	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23.	5.1	89
58	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12.	5.1	117
59	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24.	5.1	525
60	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A132.	5.1	109
61	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A6.	5.1	62
62	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2.	5.1	79
63	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A8.	5.1	209
64	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A9.	5.1	182
65	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 586, A141.	5.1	55
66	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A100.	5.1	44
67	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A5.	5.1	55
68	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4.	5.1	56
69	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A18.	5.1	69
70	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A21.	5.1	114
71	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A3.	5.1	53
72	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19.	5.1	273

#	Article	IF	CITATIONS
73	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16.	5.1	338
74	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20.	5.1	1,233
75	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 596, A101.	5.1	24
76	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A105.	5.1	47
77	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	5.1	535
78	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A138.	5.1	270
79	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
80	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A108.	5.1	375
81	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A14.	5.1	568
82	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15.	5.1	360
83	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A25.	5.1	153
84	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A103.	5.1	89
85	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A133.	5.1	173
86	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A137.	5.1	27
87	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 596, A109.	5.1	185
88	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	5.1	8,344
89	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A22.	5.1	274
90	Planckintermediate results. Astronomy and Astrophysics, 2016, 596, A106.	5.1	23

#	Article	IF	Citations
91	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A102.	5.1	25
92	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A104.	5.1	36
93	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A110.	5.1	64
94	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A135.	5.1	109
95	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A136.	5.1	72
96	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A26.	5.1	182
97	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A107.	5.1	359
98	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A139.	5.1	32
99	Polycomp: Efficient and configurable compression of astronomical timelines. Astronomy and Computing, 2016, 16, 88-98.	1.7	3
100	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A17.	5.1	440
101	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A11.	5.1	613
102	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 580, A22.	5.1	80
103	<i>Planck</i> intermediate results. XXVI. Optical identification and redshifts of <i>Planck</i> clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29.	5.1	46
104	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 582, A30.	5.1	72
105	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A31.	5.1	59
106	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
107	<i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
108	<i>Planck</i> intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119

#	Article	IF	Citations
109	<i>Planck</i> intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68
110	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13
111	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 580, A13.	5.1	37
112	<i>Planck</i> iintermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Ast A107.	tro ph ysics,	, 2 015 , 576,
113	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2015, 582, A28.	5.1	33
114	Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301.	7.8	819
115	Low-radiation environment affects the development of protection mechanisms in V79 cells. Radiation and Environmental Biophysics, 2015, 54, 183-194.	1.4	56
116	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
117	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
118	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
119	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
120	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
121	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
122	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
123	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
124	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216
125	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2014, 566, A54.	5.1	80
126	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144

#	Article	IF	CITATIONS
127	<i>Planck</i> >2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566
128	PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 006-006.	5.4	138
129	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
130	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
131	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
132	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
133	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
134	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
135	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
136	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> li>all-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133
137	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
138	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
139	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126
140	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
141	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
142	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99
143	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
144	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116

#	Article	IF	CITATIONS
145	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
146	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
147	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
148	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2014, 561, A97.	5.1	80
149	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272
150	<i>Planck</i> >2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
151	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
152	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
153	In-flight calibration and verification of the Planck-LFI instrument. Journal of Instrumentation, 2013, 8, T07001-T07001.	1.2	3
154	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
155	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
156	<i>Planck</i> iiiitermediate results <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2013, 558, C2.	5.1	4
157	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
158	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
159	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A130.	5.1	36
160	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
161	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106

#	Article	IF	Citations
163	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
164	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
165	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
166	A coherent polarimeter array for the Large Scale Polarization Explorer (LSPE) balloon experiment. Proceedings of SPIE, 2012, , .	0.8	13
167	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
168	The Large-Scale Polarization Explorer (LSPE). Proceedings of SPIE, 2012, , .	0.8	38
169	Human \hat{I}^2 2-glycoprotein I attenuates mouse intestinal ischemia/reperfusion induced injury and inflammation. Molecular Immunology, 2012, 52, 207-216.	2.2	5
170	Effect of Fourier filters in removing periodic systematic effects from CMB data. Astronomy and Astrophysics, 2011, 529, A141.	5.1	0
171	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
172	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180
173	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103
174	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	5.1	123
175	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
176	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> . Astronomy and Astrophysics, 2011, 536, A2.	5.1	91
177	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
178	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
179	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88
180	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152

#	Article	IF	CITATIONS
181	<i>Planck</i> early results. V. The Low Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A5.	5.1	77
182	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	5.1	74
183	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
184	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	5.1	314
185	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	5.1	179
186	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124
187	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
188	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
189	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
190	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â-Â 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72
191	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
192	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
193	<i>Planck</i> early results. III. First assessment of the Low Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A3.	5.1	108
194	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
195	<i>Planck</i> pre-launch status: The <i>Planck</i> LFI programme. Astronomy and Astrophysics, 2010, 520, A3.	5.1	81
196	<i>Planck</i> pre-launch status: Low Frequency Instrument calibration and expected scientific performance. Astronomy and Astrophysics, 2010, 520, A5.	5.1	25
197	Planckpre-launch status: Calibration of the Low Frequency Instrument flight model radiometers. Astronomy and Astrophysics, 2010, 520, A6.	5.1	11
198	<i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1.	5.1	268

#	Article	IF	CITATIONS
199	<i>Planck</i> pre-launch status: Design and description of the Low Frequency Instrument. Astronomy and Astrophysics, 2010, 520, A4.	5.1	125
200	<i>Planck</i> à€‰â€‰ pre-launch status: Expected LFI polarisation capability. Astronomy and Astrophysics, 2010, 520, A8.	5.1	69
201	Dynamic validation of the Planck-LFI thermal model. Journal of Instrumentation, 2010, 5, T01002-T01002.	1.2	5
202	Level 1 on-ground telemetry handling in Planck-LFI. Journal of Instrumentation, 2009, 4, T12019-T12019.	1.2	5
203	Planck-LFI: design and performance of the 4 Kelvin Reference Load Unit. Journal of Instrumentation, 2009, 4, T12006-T12006.	1.2	30
204	Planck-LFI radiometers tuning. Journal of Instrumentation, 2009, 4, T12013-T12013.	1.2	11
205	Cryogenic environment and performance for testing the Planck radiometers. Journal of Instrumentation, 2009, 4, T12015-T12015.	1.2	6
206	LFI Radiometric Chain Assembly (RCA) data handling "Rachel". Journal of Instrumentation, 2009, 4, T12017-T12017.	1,2	4
207	Optimization of Planck-LFI on-board data handling. Journal of Instrumentation, 2009, 4, T12018-T12018.	1.2	12
208	LFI 30 and 44 GHz receivers Back-End Modules. Journal of Instrumentation, 2009, 4, T12003-T12003.	1.2	14
209	The linearity response of the Planck-LFI flight model receivers. Journal of Instrumentation, 2009, 4, T12011-T12011.	1.2	14
210	Off-line radiometric analysis of Planck-LFI data. Journal of Instrumentation, 2009, 4, T12020-T12020.	1.2	9
211	A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline. Journal of Instrumentation, 2009, 4, T12021-T12021.	1.2	4
212	Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument. Journal of Instrumentation, 2009, 4, T12002-T12002.	1,2	20
213	High resolution laser-based detection of ammonia. Laser Physics, 2009, 19, 245-251.	1.2	6
214	Noise properties of the Planck-LFI receivers. Journal of Instrumentation, 2009, 4, T12009-T12009.	1.2	20
215	Thermal susceptibility of the Planck-LFI receivers. Journal of Instrumentation, 2009, 4, T12012-T12012.	1.2	9
216	Design, development, and verification of the Planck Low Frequency Instrument 70 GHz Front-End and Back-End Modules. Journal of Instrumentation, 2009, 4, T12001-T12001.	1.2	17

#	Article	IF	Citations
217	PROFALIGN Algorithm Identifies the Regions Containing Folding Determinants by Scoring Pairs of Hydrophobic Profiles of Remotely Related Proteins. Journal of Computational Biology, 2008, 15, 445-455.	1.6	1
218	Isolation of flagellated bacteria implicated in Crohn $\hat{E}\frac{1}{4}$ s disease. Inflammatory Bowel Diseases, 2007, 13, 1191-1201.	1.9	108
219	The low frequency instrument on-board the Planck satellite: Characteristics and performance. New Astronomy Reviews, 2007, 51, 287-297.	12.8	8
220	The Planck LFI RCA flight model test campaign. New Astronomy Reviews, 2007, 51, 305-309.	12.8	1
221	Calibration and testing of the Planck-LFI QM instrument. , 2006, , .		2
222	Thermal models of the Planck/LFI QM/FM instruments. , 2006, 6271, 341.		1
223	Data analysis of the Planck/LFI ground-test campaign. , 2006, , .		1
224	Thermal stability in precision cosmology experiments: the Planck LFI case. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 520, 393-395.	1.6	2
225	Analysis of the radiometerâ€"reference load system on board the Planck/LFI instrument. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 520, 396-401.	1.6	6
226	Peptides derived from the heptad repeat region near the C-terminal of Sendai virus F protein bind the hemagglutinin-neuraminidase ectodomain. FEBS Letters, 2003, 536, 56-60.	2.8	11
227	Recurrence quantification analysis reveals interaction partners in paramyxoviridae envelope glycoproteins. Proteins: Structure, Function and Bioinformatics, 2002, 46, 171-176.	2.6	20
228	Thermal stability of the hemagglutinin-neuraminidase from Sendai virus evidences two folding domains. FEBS Letters, 2001, 495, 48-51.	2.8	3
229	Anomeric Specificity and Protein–Substrate Interactions Support the 3D Model for the Hemagglutinin–Neuraminidase from Sendai Virus. Biochemical and Biophysical Research Communications, 1999, 262, 401-405.	2.1	3
230	Mild proteolysis induces a ready-to-fuse state on Sendai virus envelope. FEBS Letters, 1998, 423, 286-290.	2.8	1
231	Ageâ€Related Decline in Murine Macrophage Production of Nitric Oxide. Journal of Infectious Diseases, 1997, 175, 1004-1007.	4.0	56
232	Strong mucosal adjuvanticity of cholera toxin within lipid particles of a new multiple emulsion delivery system for oral immunization. European Journal of Immunology, 1997, 27, 2720-2725.	2.9	20
233	Oral-Antigen Delivery by way of a Multiple Emulsion System Enhances Oral Tolerancea. Annals of the New York Academy of Sciences, 1996, 778, 156-162.	3.8	23
234	Conjugation of cholera toxin or its B subunit to liposomes for targeted delivery of antigens. Journal of Immunological Methods, 1995, 185, 31-42.	1.4	38

#	Article	IF	Citations
235	Activation of the Sendai Virus Fusion Protein by Receptor Binding. Biochemical and Biophysical Research Communications, 1995, 208, 36-41.	2.1	17
236	Inhibition of Sendai Virus Hemagglutinin Neuraminidase by the Fusion Protein. Biochemical and Biophysical Research Communications, 1994, 201, 988-993.	2.1	5
237	Allosteric inhibition of the water-soluble C-terminal fragment of Sendai virus neuraminidase. Biochemistry International, 1991, 25, 663-8.	0.2	0
238	Selective extraction of haemagglutinin and matrix protein from Sendai virions by employing trifluoperazine as a detergent. FEBS Letters, 1988, 238, 171-174.	2.8	6
239	Glycoproteins of envelope viruses as a model for studying cell fusion processes. Annali Dell'Istituto Superiore Di Sanita, 1988, 24, 71-81.	0.4	1
240	Diphtheria toxin and its mutantcrm197 differ in their interaction with lipids. FEBS Letters, 1987, 215, 73-78.	2.8	33
241	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 1. Liposome aggregation and fusion. FEBS Journal, 1987, 169, 629-635.	0.2	38
242	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. FEBS Journal, 1987, 169, 637-644.	0.2	68
243	Comparison of antibody response in mice to Sendai virus exposed to disulfide bonds splitting or U.V. irradiation. Microbiologica, 1987, 10, 19-27.	0.2	0
244	Multiple lipid interactions of the Sendai virus fusogenic protein. Journal of Biological Chemistry, 1987, 262, 11490-6.	3.4	12
245	Hydrophobic photolabelling of pertussis toxin subunits interacting with lipids. FEBS Letters, 1986, 194, 301-304.	2.8	26
246	Comparison of water exposed area of cholera toxin when free in solution and bound to liposomes containing the ganglioside GMI. Biochemical and Biophysical Research Communications, 1985, 130, 835-840.	2.1	2
247	Cytotoxicity acquired by ribosome-inactivating proteins carried by reconstituted Sendai virus envelopes. FEBS Letters, 1983, 157, 150-154.	2.8	17
248	Method for selective labeling of cholera toxin binding region. Annali Dell'Istituto Superiore Di Sanita, 1983, 19, 379-83.	0.4	0
249	Cholera toxin B-subunit protects mammalian cells from ricin and abrin toxicity. Journal of Cellular Biochemistry, 1982, 20, 359-367.	2.6	4
250	Isolation of Salmonella wien heat-labile enterotoxin. Microbiologica, 1982, 5, 1-10.	0.2	16
251	Selective extraction of biologically active F-glycoprotein from dithiothreitol reduced sendai virus particles. FEBS Letters, 1981, 131, 381-385.	2.8	25
252	Lipid insertion of cholera toxin after binding to GM1-containing liposomes. Journal of Biological Chemistry, 1981, 256, 11177-81.	3.4	73

#	Article	IF	CITATIONS
253	Interaction of GM1 Ganglioside with Bovine Serum Albumin Formation and Isolation of Multiple Complexes. FEBS Journal, 1980, 111, 315-324.	0.2	58
254	The Role of the Reactive Disulfide Bond in the Interaction of Cholera-Toxin Functional Regions. FEBS Journal, 1979, 93, 621-627.	0.2	32
255	Dissociation of cholera toxin functional regions after interaction with vesicles containing ganglioside GM1. FEBS Letters, 1979, 106, 309-312.	2.8	9
256	The role of environmental parameters on the stability of cholera toxin functional regions. FEBS Letters, 1978, 94, 253-256.	2.8	11
257	Comparison of wheat albumin inhibitors of α-amylase and trypsin. Phytochemistry, 1974, 13, 2487-2495.	2.9	62