Zhong-Fang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles. , 2022, 1, 100031.		31
2	A novel 2D porous C ₃ N ₂ framework as a promising anode material with ultra-high specific capacity for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 6551-6559.	5.2	22
3	Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: A DFT investigation. Applied Surface Science, 2022, 592, 153233.	3.1	18
4	Understanding the CH4 Conversion over Metal Dimers from First Principles. Nanomaterials, 2022, 12, 1518.	1.9	2
5	Atomically Dispersed Uranium Enables an Unprecedentedly High NH ₃ Yield Rate. Nano Letters, 2022, 22, 4475-4481.	4.5	12
6	Constructing two-dimensional holey graphyne with unusual annulative π-extension. Matter, 2022, 5, 2306-2318.	5.0	34
7	Particle Swarm Predictions of a SrB ₈ Monolayer with 12-Fold Metal Coordination. Journal of the American Chemical Society, 2022, 144, 11120-11128.	6.6	12
8	Establishing a Theoretical Landscape for Identifying Basal Plane Active 2D Metal Borides (MBenes) toward Nitrogen Electroreduction. Advanced Functional Materials, 2021, 31, 2008056.	7.8	97
9	Doubleâ€sided surface functionalization: An effective approach to stabilize and modulate the electronic structure of grapheneâ€ike borophene. InformaÄnÃ-Materiály, 2021, 3, 327-336.	8.5	18
10	In Situ Observation of Non lassical 2â€Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angewandte Chemie - International Edition, 2021, 60, 4581-4587.	7.2	16
11	In Situ Observation of Nonâ€Classical 2â€Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angewandte Chemie, 2021, 133, 4631-4637.	1.6	2
12	2D auxetic material with intrinsic ferromagnetism: a copper halide (CuCl ₂) monolayer. Physical Chemistry Chemical Physics, 2021, 23, 22078-22085.	1.3	7
13	Predicting the adsorption of organic pollutants on boron nitride nanosheets <i>via in silico</i> techniques: DFT computations and QSAR modeling. Environmental Science: Nano, 2021, 8, 795-805.	2.2	13
14	Penta-MS ₂ (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson's ratios and tunable bandgaps as water-splitting photocatalysts. Journal of Materials Chemistry A, 2021, 9, 6993-7004.	5.2	42
15	Enhanced performance of Mo ₂ P monolayer as lithium-ion battery anode materials by carbon and nitrogen doping: a first principles study. Physical Chemistry Chemical Physics, 2021, 23, 4030-4038.	1.3	26
16	C ₉ N ₄ and C ₂ N ₆ S ₃ monolayers as promising anchoring materials for lithium–sulfur batteries: weakening the shuttle effect <i>via</i> optimizing lithium bonds. Physical Chemistry Chemical Physics, 2021, 23, 12958-12967.	1.3	9
17	Identifying the Activity Origin of a Cobalt Singleâ€Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Advanced Functional Materials, 2021, 31, 2100547.	7.8	93
18	Rücktitelbild: In Situ Observation of Nonâ€Classical 2â€Norbornyl Cation in Confined Zeolites at Ambient Temperature (Angew. Chem. 9/2021). Angewandte Chemie, 2021, 133, 5004-5004.	1.6	0

#	Article	IF	CITATIONS
19	MX Anti-MXenes from Non-van der Waals Bulks for Electrochemical Applications: The Merit of Metallicity and Active Basal Plane. ACS Nano, 2021, 15, 6233-6242.	7.3	26
20	Enhancing Ferromagnetism and Tuning Electronic Properties of Crl ₃ Monolayers by Adsorption of Transition-Metal Atoms. ACS Applied Materials & Interfaces, 2021, 13, 21593-21601.	4.0	30
21	Single-atom catalysts with anionic metal centers: Promising electrocatalysts for the oxygen reduction reaction and beyond. Journal of Energy Chemistry, 2021, 63, 285-293.	7.1	15
22	Molecular Crowding Effect in Aqueous Electrolytes to Suppress Hydrogen Reduction Reaction and Enhance Electrochemical Nitrogen Reduction. Advanced Energy Materials, 2021, 11, 2101699.	10.2	73
23	Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nature Communications, 2021, 12, 5128.	5.8	110
24	Tunable electronic properties and enhanced ferromagnetism in Cr ₂ Ge ₂ Te ₆ monolayer by strain engineering. Nanotechnology, 2021, 32, 485408.	1.3	7
25	Coordination tailoring towards efficient single-atom catalysts for N2 fixation: A case study of iron-nitrogen-carbon (Fe@N-C) systems. Catalysis Today, 2020, 350, 91-99.	2.2	45
26	Semiconducting SN ₂ monolayer with three-dimensional auxetic properties: a global minimum with tetracoordinated sulfurs. Nanoscale, 2020, 12, 85-92.	2.8	21
27	Relative Efficacy of Coâ^'X ₄ Embedded Graphene (X=N, S, B, and P) Electrocatalysts towards Hydrogen Evolution Reaction: Is Nitrogen Really the Best Choice?. ChemCatChem, 2020, 12, 536-543.	1.8	32
28	N-heterocyclic carbene as a promising metal-free electrocatalyst with high efficiency for nitrogen reduction to ammonia. Journal of Energy Chemistry, 2020, 46, 78-86.	7.1	33
29	Machine-learning-assisted screening of pure-silica zeolites for effective removal of linear siloxanes and derivatives. Journal of Materials Chemistry A, 2020, 8, 3228-3237.	5.2	14
30	Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation. Nano Energy, 2020, 78, 105283.	8.2	38
31	Zeolite-templated carbons as effective sorbents to remove methylsiloxanes and derivatives: A computational screening. Green Energy and Environment, 2020, , .	4.7	0
32	Evaluation procedure of photocatalysts for VOCs degradation from the view of density functional theory calculations: g-C ₃ N ₄ dots/graphene as an example. Journal of Materials Chemistry A, 2020, 8, 20363-20372.	5.2	54
33	Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. Journal of Materials Chemistry A, 2020, 8, 24563-24571.	5.2	71
34	Enhanced Ferromagnetism and Tunable Magnetism in Fe ₃ GeTe ₂ Monolayer by Strain Engineering. ACS Applied Materials & Interfaces, 2020, 12, 26367-26373.	4.0	83
35	Rational Prediction of Single Metal Atom Supported on Two-Dimensional Metal Diborides for Electrocatalytic N ₂ Reduction Reaction with Integrated Descriptor. Journal of Physical Chemistry Letters, 2020, 11, 5241-5247.	2.1	37
36	Polymorphism of low dimensional boron nanomaterials driven by electrostatic gating: a computational discovery. Nanoscale, 2020, 12, 10543-10549.	2.8	5

#	Article	IF	CITATIONS
37	Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 8902-8912.	1.3	79
38	Planar Hypercoordinate Motifs in Two-Dimensional Materials. Accounts of Chemical Research, 2020, 53, 887-895.	7.6	54
39	Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. Journal of the American Chemical Society, 2020, 142, 5709-5721.	6.6	664
40	Underlying mechanisms of reactive oxygen species and oxidative stress photoinduced by graphene and its surface-functionalized derivatives. Environmental Science: Nano, 2020, 7, 782-792.	2.2	21
41	Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B ₇ P ₂ monolayer with suitable pore size and distribution. Journal of Materials Chemistry A, 2020, 8, 10301-10309.	5.2	44
42	Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. Journal of Materials Chemistry A, 2020, 8, 5663-5670.	5.2	112
43	Identifying the Ground-State NP Sheet through a Global Structure Search in Two-Dimensional Space and Its Promising High-Efficiency Photovoltaic Properties. , 2019, 1, 375-382.		26
44	Highly porous, low band-gap Ni _x Mn _{3â^²x} O ₄ (0.55 ≤i>x≤1.2) spinel nanoparticles with <i>in situ</i> coated carbon as advanced cathode materials for zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 17854-17866.	5.2	65
45	Oxygen Evolution Reaction on 2D Ferromagnetic Fe ₃ GeTe ₂ : Boosting the Reactivity by the Selfâ€Reduction of Surface Hydroxyl. Advanced Functional Materials, 2019, 29, 1904782.	7.8	42
46	Simultaneously Achieving High Activity and Selectivity toward Two-Electron O ₂ Electroreduction: The Power of Single-Atom Catalysts. ACS Catalysis, 2019, 9, 11042-11054.	5.5	314
47	Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy and Environmental Science, 2019, 12, 322-333.	15.6	1,078
48	Boosting ORR/OER Activity of Graphdiyne by Simple Heteroatom Doping. Small Methods, 2019, 3, 1800550.	4.6	149
49	Predicting Novel 2D MB ₂ (M = Ti, Hf, V, Nb, Ta) Monolayers with Ultrafast Dirac Transport Channel and Electron-Orbital Controlled Negative Poisson's Ratio. Journal of Physical Chemistry Letters, 2019, 10, 2567-2573.	2.1	65
50	Nonvolatile Electrical Control and Heterointerfaceâ€Induced Halfâ€Metallicity of 2D Ferromagnets. Advanced Functional Materials, 2019, 29, 1901420.	7.8	109
51	1 + 1′ > 2: Heteronuclear Biatom Catalyst Outperforms Its Homonuclear Counterparts for CO Oxidation. Small Methods, 2019, 3, 1800480.	4.6	92
52	Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coordination Chemistry Reviews, 2019, 388, 406-439.	9.5	54
53	B-terminated (111) polar surfaces of BP and BAs: promising metal-free electrocatalysts with large reaction regions for nitrogen fixation. Journal of Materials Chemistry A, 2019, 7, 13284-13292.	5.2	87
54	Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties. Nanoscale, 2019, 11, 8260-8269.	2.8	70

#	Article	IF	CITATIONS
55	Frustrated Lewis pairs photocatalyst for visible light-driven reduction of CO to multi-carbon chemicals. Nanoscale, 2019, 11, 20777-20784.	2.8	38
56	Computational Screening of Efficient Singleâ€Atom Catalysts Based on Graphitic Carbon Nitride (g ₃ N ₄) for Nitrogen Electroreduction. Small Methods, 2019, 3, 1800368.	4.6	347
57	Computational Quest for High-Performance Electrocatalysts for Nitrogen Fixation. ECS Meeting Abstracts, 2019, , .	0.0	0
58	Computational Screening of Single-Atom Electrocatalysts for Oxygen Reduction Reaction By Machine Learning Algorithm. ECS Meeting Abstracts, 2019, , .	0.0	0
59	Towards High-Performancepgm-Free ORR Electrocatalysts: Interplay between Theory and Experiment. ECS Meeting Abstracts, 2019, , .	0.0	0
60	A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon. Nanoscale Horizons, 2018, 3, 327-334.	4.1	51
61	Porous silaphosphorene, silaarsenene and silaantimonene: a sweet marriage of Si and P/As/Sb. Journal of Materials Chemistry A, 2018, 6, 3738-3746.	5.2	14
62	A non-innocent salen naphthalene ligand and its Co 2+ , Ni 2+ and Cu 2+ metal complexes: Structural, electrochemical, and spectroscopic characterization and computational studies. Inorganica Chimica Acta, 2018, 474, 118-127.	1.2	12
63	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	18.7	697
64	Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction. Frontiers of Physics, 2018, 13, 1.	2.4	60
65	A Co–N ₄ moiety embedded into graphene as an efficient single-atom-catalyst for NO electrochemical reduction: a computational study. Journal of Materials Chemistry A, 2018, 6, 7547-7556.	5.2	99
66	Photophysical and photochemical insights into the photodegradation of sulfapyridine in water: A joint experimental and theoretical study. Chemosphere, 2018, 191, 1021-1027.	4.2	21
67	Extraordinary Magnetoresistance in Janus Monolayer MoTeB ₂ : A Theoretical Prediction. Journal of Physical Chemistry C, 2018, 122, 28423-28430.	1.5	6
68	To Be or Not To Be Protonated: <i>cyclo</i> -N ₅ [–] in Crystal and Solvent. Journal of Physical Chemistry Letters, 2018, 9, 7137-7145.	2.1	12
69	Modulating the electronic properties of perovskite via σ–π interfacial interactions: A computational study. APL Materials, 2018, 6, .	2.2	6
70	The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation. Physical Chemistry Chemical Physics, 2018, 20, 24453-24464.	1.3	4
71	PdSeO ₃ Monolayer: Promising Inorganic 2D Photocatalyst for Direct Overall Water Splitting Without Using Sacrificial Reagents and Cocatalysts. Journal of the American Chemical Society, 2018, 140, 12256-12262.	6.6	216
72	Porous hexagonal boron oxide monolayer with robust wide band gap: A computational study. FlatChem, 2018, 9, 27-32.	2.8	29

#	Article	IF	CITATIONS
73	Aromaticity and Antiaromaticity in Zintl Clusters. Chemistry - A European Journal, 2018, 24, 14583-14597.	1.7	52
74	1T phase as an efficient hole injection layer to TMDs transistors: a universal approach to achieve p-type contacts. 2D Materials, 2018, 5, 031012.	2.0	27
75	Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency. Nano Energy, 2018, 51, 489-495.	8.2	46
76	Cu dimer anchored on C ₂ N monolayer: low-cost and efficient Bi-atom catalyst for CO oxidation. Nanoscale, 2018, 10, 15696-15705.	2.8	68
77	A hidden symmetry-broken phase of MoS ₂ revealed as a superior photovoltaic material. Journal of Materials Chemistry A, 2018, 6, 16087-16093.	5.2	16
78	Exploring adsorption of neutral aromatic pollutants onto graphene nanomaterials <i>via</i> molecular dynamics simulations and theoretical linear solvation energy relationships. Environmental Science: Nano, 2018, 5, 2117-2128.	2.2	22
79	Thiol-maleimide poly(ethylene glycol) crosslinking of L-asparaginase subunits at recombinant cysteine residues introduced by mutagenesis. PLoS ONE, 2018, 13, e0197643.	1.1	11
80	Recent Advances in Aromatic Antimony Clusters. Chinese Journal of Chemistry, 2018, 36, 955-960.	2.6	8
81	Two-dimensional aluminum monoxide nanosheets: A computational study. Frontiers of Physics, 2018, 13, 1.	2.4	3
82	Spindle nodal chain in three-dimensional α′ boron. Physical Chemistry Chemical Physics, 2018, 20, 23500-23506.	1.3	21
83	Copper Dimer Supported on a C ₂ N Layer as an Efficient Electrocatalyst for CO ₂ Reduction Reaction: A Computational Study. Journal of Physical Chemistry C, 2018, 122, 19712-19721.	1.5	167
84	Highly Efficient Photocatalytic Degradation of Dyes by a Copper–Triazolate Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 16804-16813.	1.7	81
85	Two-Dimensional C ₄ N Global Minima: Unique Structural Topologies and Nanoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 2669-2674.	1.5	49
86	Predicting a graphene-like WB4 nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin–orbit coupling. Physical Chemistry Chemical Physics, 2017, 19, 5449-5453.	1.3	40
87	Holey graphene: a unique structural derivative of graphene. Materials Research Letters, 2017, 5, 209-234.	4.1	85
88	Tetra-silicene: A Semiconducting Allotrope of Silicene with Negative Poisson's Ratios. Journal of Physical Chemistry C, 2017, 121, 9627-9633.	1.5	57
89	Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Letters, 2017, 17, 3434-3440.	4.5	250
90	Guidelines for rational design of high-performance absorbents: A case study of zeolite adsorbents for emerging pollutants in water. Green Energy and Environment, 2017, 2, 363-369.	4.7	13

#	Article	IF	CITATIONS
91	Component Matters: Paving the Roadmap toward Enhanced Electrocatalytic Performance of Graphitic C ₃ N ₄ -Based Catalysts <i>via</i> Atomic Tuning. ACS Nano, 2017, 11, 6004-6014.	7.3	144
92	Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet. Journal of Physical Chemistry Letters, 2017, 8, 1707-1713.	2.1	81
93	Diels–Alder reactions of graphene oxides: greatly enhanced chemical reactivity by oxygen-containing groups. Physical Chemistry Chemical Physics, 2017, 19, 11142-11151.	1.3	10
94	Frustrated Lewis Pair Catalysts in Two Dimensions: B/Al-Doped Phosphorenes as Promising Catalysts for Hydrogenation of Small Unsaturated Molecules. ACS Catalysis, 2017, 7, 766-771.	5.5	45
95	Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping. Electrochimica Acta, 2017, 225, 543-550.	2.6	106
96	A two-dimensional TiB ₄ monolayer exhibits planar octacoordinate Ti. Nanoscale, 2017, 9, 17983-17990.	2.8	50
97	Unveiling Adsorption Mechanisms of Organic Pollutants onto Carbon Nanomaterials by Density Functional Theory Computations and Linear Free Energy Relationship Modeling. Environmental Science & Technology, 2017, 51, 11820-11828.	4.6	38
98	Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. Journal of the American Chemical Society, 2017, 139, 12480-12487.	6.6	1,006
99	Synthesis, characterization and electronic properties of an endohedral plumbaspherene [Au@Pb ₁₂] ^{3â^'} . Inorganic Chemistry Frontiers, 2017, 4, 1393-1396.	3.0	26
100	Hexagonal honeycomb silicon: Silicene. Series in Materials Science and Engineering, 2017, , 171-188.	0.1	0
101	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie, 2016, 128, 1698-1701.	1.6	315
102	Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. Journal of Materials Chemistry A, 2016, 4, 12205-12211.	5.2	112
103	FeB ₆ Monolayers: The Graphene-like Material with Hypercoordinate Transition Metal. Journal of the American Chemical Society, 2016, 138, 5644-5651.	6.6	219
104	Enhanced lithium adsorption/diffusion and improved Li capacity on SnS ₂ nanoribbons: A computational investigation. Journal of Materials Research, 2016, 31, 878-885.	1.2	31
105	Graphene-like Two-Dimensional Ionic Boron with Double Dirac Cones at Ambient Condition. Nano Letters, 2016, 16, 3022-3028.	4.5	222
106	Insight into the Origin of Boosted Photosensitive Efficiency of Graphene from the Cooperative Experiment and Theory Study. Journal of Physical Chemistry C, 2016, 120, 27091-27103.	1.5	37
107	Two-Dimensional Y ₂ C Electride: A Promising Anode Material for Na-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 18473-18478.	1.5	81
108	Dirac State in the FeB ₂ Monolayer with Graphene-Like Boron Sheet. Nano Letters, 2016, 16, 6124-6129.	4.5	200

#	Article	IF	CITATIONS
109	A Cr ₂ CO ₂ monolayer as a promising cathode for lithium and non-lithium ion batteries: a computational exploration. RSC Advances, 2016, 6, 81591-81596.	1.7	29
110	Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Physical Review B, 2016, 93, .	1.1	118
111	Computational investigation on MB n (M = Li-Cs, Be-Ba, Sc-La and Ti; n = 28 and 38). Journal of Modeling, 2016, 22, 184.	Molecular 0.8	12
112	Highâ€Performance Ru ₁ /CeO ₂ Singleâ€Atom Catalyst for CO Oxidation: A Computational Exploration. ChemPhysChem, 2016, 17, 3170-3175.	1.0	47
113	Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets. Scientific Reports, 2016, 6, 26084.	1.6	19
114	Anomalous Enhancement of Mechanical Properties in the Ammonia Adsorbed Defective Graphene. Scientific Reports, 2016, 6, 33810.	1.6	3
115	Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio. Nature Communications, 2016, 7, 11488.	5.8	247
116	How does the B,F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C ₃ N ₄ ?. Physical Chemistry Chemical Physics, 2016, 18, 19217-19226.	1.3	99
117	Scandium carbides/cyanides in the boron cage: computational prediction of X@B ₈₀ (X =) Tj ETQq1 1	0.784314 1.3	l rgBT /Overl 8
118	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie - International Edition, 2016, 55, 1666-1669.	7.2	651
119	Singleâ^'sided fluorine–functionalized graphene: A metal–free electrocatalyst with high efficiency for oxygen reduction reaction. Carbon, 2016, 104, 56-63.	5.4	51
120	Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study. Journal of Materials Chemistry A, 2016, 4, 6124-6130.	5.2	156
121	Predicting a new phase (T′′) of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition. Nanoscale, 2016, 8, 4969-4975.	2.8	50
122	Single Layer Bismuth Iodide: Computational Exploration of Structural, Electrical, Mechanical and Optical Properties. Scientific Reports, 2015, 5, 17558.	1.6	67
123	Oxidative Etching of Hexagonal Boron Nitride Toward Nanosheets with Defined Edges and Holes. Scientific Reports, 2015, 5, 14510.	1.6	58
124	Four Decades of the Chemistry of Planar Hypercoordinate Compounds. Angewandte Chemie - International Edition, 2015, 54, 9468-9501.	7.2	217
125	Innovation and discovery of grapheneâ€ike materials via densityâ€functional theory computations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 360-379.	6.2	205
126	A Density Functional Theory Study of the Mechanical Properties of Graphane With van der Waals Corrections. Mechanics of Advanced Materials and Structures, 2015, 22, 717-721.	1.5	32

#	Article	IF	CITATIONS
127	Computational investigation on the endohedral borofullerenes M@B40 (MÂ=ÂSc, Y, La). Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	61
128	Mechanical properties and stabilities of g-ZnS monolayers. RSC Advances, 2015, 5, 11240-11247.	1.7	49
129	Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Bandâ€Gap Transitions. Angewandte Chemie - International Edition, 2015, 54, 3112-3115.	7.2	1,211
130	Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Bandâ€Gap Transitions. Angewandte Chemie, 2015, 127, 3155-3158.	1.6	397
131	Magnetic properties of atomic clusters and endohedral metallofullerenes. Coordination Chemistry Reviews, 2015, 289-290, 315-340.	9.5	86
132	Mechanical degradation of graphene by epoxidation: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 19484-19490.	1.3	25
133	Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale, 2015, 7, 11633-11641.	2.8	164
134	Dynamic motion of an Lu pair inside a C ₇₆ (T _d) cage. RSC Advances, 2015, 5, 34383-34389.	1.7	4
135	Carbon-Doped Boron Nitride Nanosheet: An Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 26348-26354.	1.5	144
136	Designing high-voltage carbonyl-containing polycyclic aromatic hydrocarbon cathode materials for Li-ion batteries guided by Clar's theory. Journal of Materials Chemistry A, 2015, 3, 19137-19143.	5.2	68
137	Quantum spin hall insulators in strain-modified arsenene. Nanoscale, 2015, 7, 19152-19159.	2.8	151
138	Flexible structural and electronic properties of a pentagonal B ₂ C monolayer via external strain: a computational investigation. Physical Chemistry Chemical Physics, 2015, 17, 24151-24156.	1.3	127
139	Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS ₂ monolayer. Journal of Materials Chemistry C, 2015, 3, 9603-9608.	2.7	135
140	Exploration of High-Performance Single-Atom Catalysts on Support M ₁ /FeO _{<i>x</i>} for CO Oxidation via Computational Study. ACS Catalysis, 2015, 5, 544-552.	5.5	217
141	Mechanical properties and stabilities of α-boron monolayers. Physical Chemistry Chemical Physics, 2015, 17, 2160-2168.	1.3	37
142	Selectivity trend of gas separation through nanoporous graphene. Journal of Solid State Chemistry, 2015, 224, 2-6.	1.4	97
143	Reducing Band Gap and Enhancing Carrier Mobility of Boron Nitride Nanoribbons by Conjugated π Edge States. Journal of Physical Chemistry C, 2014, 118, 25051-25056.	1.5	25

Nanotubes: Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes (Adv. Funct.) Tj ETQq0 0 0, gBT /Overlock 10

#	Article	IF	CITATIONS
145	Computational quest for spherical C12B68 fullerenes with "magicâ€-ï€-electrons and quasi-planar tetra-coordinated carbon. Journal of Molecular Modeling, 2014, 20, 2085.	0.8	6
146	Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes. Advanced Functional Materials, 2014, 24, 4497-4506.	7.8	67
147	Be ₂ C Monolayer with Quasiâ€Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie - International Edition, 2014, 53, 7248-7252.	7.2	223
148	Carbon atoms trapped in cages: Metal carbide clusterfullerenes. Coordination Chemistry Reviews, 2014, 270-271, 89-111.	9.5	73
149	Tuning Electronic Properties of Germanane Layers by External Electric Field and Biaxial Tensile Strain: A Computational Study. Journal of Physical Chemistry C, 2014, 118, 1148-1154.	1.5	92
150	Theoretical design of MoO ₃ -based high-rate lithium ion battery electrodes: the effect of dimensionality reduction. Journal of Materials Chemistry A, 2014, 2, 19180-19188.	5.2	32
151	Metallic BSi ₃ Silicene and Its One-Dimensional Derivatives: Unusual Nanomaterials with Planar Aromatic <i>D</i> _{6<i>h</i>} Six-Membered Silicon Rings. Journal of Physical Chemistry C, 2014, 118, 25825-25835.	1.5	37
152	Metallic BSi ₃ Silicene: A Promising High Capacity Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 25836-25843.	1.5	62
153	With the same Clar formulas, do the two-dimensional sandwich nanostructures X–Cr–X (X = C4H,) Tj ETQq1	1 0,7843] 1.3	14.rgBT /Ove
154	Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field. Nanoscale, 2014, 6, 8624-8634.	2.8	64
155	Comparative density functional theory study on the electronic and optical properties of BiMO4 (M =) Tj ETQq1 1	0.784314 5.2	rggT /Overic
156	Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance Ultracapacitors. ACS Nano, 2014, 8, 8255-8265.	7.3	212
157	Self-Modulated Band Structure Engineering in C ₄ F Nanosheets: First-Principles Insights. Journal of Chemical Theory and Computation, 2014, 10, 1265-1271.	2.3	23
158	Al ₂ C monolayer: the planar tetracoordinate carbon global minimum. Nanoscale, 2014, 6, 10784.	2.8	82
159	Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries. Electrochimica Acta, 2014, 147, 392-400.	2.6	129
160	Graphene, inorganic graphene analogs and their composites for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 12104.	5.2	251
161	Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study. Physical Chemistry Chemical Physics, 2014, 16, 13465.	1.3	80
162	Versatile Electronic Properties of VSe ₂ Bulk, Few-Layers, Monolayer, Nanoribbons, and Nanotubes: A Computational Exploration. Journal of Physical Chemistry C, 2014, 118, 21264-21274.	1.5	114

#	Article	IF	CITATIONS
163	Synthetic and structural study on some new porphyrin or metalloporphyrin macrocycle-containing model complexes for the active site of [FeFe]-hydrogenases. Journal of Organometallic Chemistry, 2014, 749, 120-128.	0.8	5
164	Design of Three-shell Icosahedral Matryoshka Clusters A@B12@A20 (A = Sn, Pb; B = Mg, Zn, Cd, Mn). Scientific Reports, 2014, 4, 6915.	1.6	23
165	Metallic VS ₂ Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 25409-25413.	1.5	576
166	XH/Ï€ (X = C, Si) Interactions in Graphene and Silicene: Weak in Strength, Strong in Tuning Band Structures. Journal of Physical Chemistry Letters, 2013, 4, 269-275.	2.1	82
167	Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5, 4541.	2.8	614
168	An Effective Approach to Achieve a Spin Gapless Semiconductor–Halfâ€Metal–Metal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via <i>π</i> – <i>π</i> Interactions. Advanced Functional Materials, 2013, 23, 1507-1518.	7.8	37
169	Band Gap Engineering of BN Sheets by Interlayer Dihydrogen Bonding and Electric Field Control. ChemPhysChem, 2013, 14, 1787-1792.	1.0	36
170	"Benzation―of graphene upon addition of monovalent chemical species. Physical Chemistry Chemical Physics, 2013, 15, 6842.	1.3	21
171	Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: a computational investigation. Nanoscale, 2013, 5, 5321.	2.8	65
172	Graphene Nanoribbons: An Effective Approach to Achieve a Spin Gapless Semiconductor–Halfâ€Metal–Metal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via <i>π</i> 〓 <i>π</i> Interactions (Adv. Funct. Mater. 12/2013). Advanced Functional Materials, 2013, 23, 1478-1478.	7.8	1
173	CO Oxidation on TiO ₂ (110) Supported Subnanometer Gold Clusters: Size and Shape Effects. Journal of the American Chemical Society, 2013, 135, 19336-19346.	6.6	127
174	Appropriate description of intermolecular interactions in the methane hydrates: An assessment of DFT methods. Journal of Computational Chemistry, 2013, 34, 121-131.	1.5	111
175	An Improbable Monometallic Cluster Entrapped in a Popular Fullerene Cage: YCN@Cs(6)-C82. Scientific Reports, 2013, 3, 1487.	1.6	81
176	Preserving the Edge Magnetism of Zigzag Graphene Nanoribbons by Ethylene Termination: Insight by Clar's Rule. Scientific Reports, 2013, 3, 2030.	1.6	37
177	SEARCHING FOR NEW MEMBERS OF C₇₀ HOMOFULLERENES BY FIRST-PRINCIPLES COMPUTATIONS: BENT'S RULE AT WORK ON C₇₀ SURFACE. Journal of Theoretical and Computational Chemistry, 2013, 12, 1250097.	1.8	6
178	UNIFORM BENDING EFFECT ON ELECTRONIC PROPERTIES OF BORON NITRIDE NANORIBBONS: A COMPUTATIONAL INVESTIGATION. Nano LIFE, 2012, 02, 1240005.	0.6	0
179	B80 and B101–103 clusters: Remarkable stability of the core-shell structures established by validated density functionals. Journal of Chemical Physics, 2012, 136, 074302.	1.2	150
180	From Vanadium Naphthalene (V _{<i>n</i>–1} Np _{<i>n</i>}) Sandwich Clusters to VNp Sandwich Nanowire: Structural, Energetic, Electronic, and Magnetic Properties. Journal of Physical Chemistry A, 2012, 116, 1648-1654.	1.1	20

#	Article	IF	CITATIONS
181	Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale, 2012, 4, 1123-1129.	2.8	32
182	Is C60 buckminsterfullerene aromatic?. Physical Chemistry Chemical Physics, 2012, 14, 14886.	1.3	58
183	Tuning Electronic Structure of Bilayer MoS ₂ by Vertical Electric Field: A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 21556-21562.	1.5	297
184	Electronic and Magnetic Properties of Hybrid Graphene Nanoribbons with Zigzag-Armchair Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 208-213.	1.5	30
185	First total synthesis of the (±)-2-methoxy-6-heptadecynoic acid and related 2-methoxylated analogs as effective inhibitors of the Leishmania topoisomerase IB enzyme. Pure and Applied Chemistry, 2012, 84, 1867-1875.	0.9	13
186	Single-Layer [Cu ₂ Br(IN) ₂] _{<i>n</i>} Coordination Polymer (CP): Electronic and Magnetic Properties, and Implication for Molecular Sensors. Journal of Physical Chemistry C, 2012, 116, 4119-4125.	1.5	27
187	Many M©Bn boron wheels are local, but not global minima. Physical Chemistry Chemical Physics, 2012, 14, 14898.	1.3	29
188	Fe-Anchored Graphene Oxide: A Low-Cost and Easily Accessible Catalyst for Low-Temperature CO Oxidation. Journal of Physical Chemistry C, 2012, 116, 2507-2514.	1.5	189
189	Patterned Partially Hydrogenated Graphene (C ₄ H) and Its One-Dimensional Analogues: A Computational Study. Journal of Physical Chemistry C, 2012, 116, 4526-4534.	1.5	38
190	Enhanced Li Adsorption and Diffusion on MoS ₂ Zigzag Nanoribbons by Edge Effects: A Computational Study. Journal of Physical Chemistry Letters, 2012, 3, 2221-2227.	2.1	390
191	Graphane/Fluorographene Bilayer: Considerable C–H··Â-F–C Hydrogen Bonding and Effective Band Structure Engineering. Journal of the American Chemical Society, 2012, 134, 11269-11275.	6.6	105
192	Improved stability of water clusters (H2O)30–48: a Monte Carlo search coupled with DFT computations. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	20
193	Amorphous structural models for graphene oxides. Carbon, 2012, 50, 1690-1698.	5.4	114
194	Interactions between Al12X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: implications for nanotoxicity. Journal of Molecular Modeling, 2012, 18, 559-568.	0.8	21
195	Improved stability of water clusters (H2O)30–48: a Monte Carlo search coupled with DFT computations. Highlights in Theoretical Chemistry, 2012, , 75-81.	0.0	0
196	Surface Engineering of Graphene-Enzyme Nanocomposites for Miniaturized Biofuel Cell. IEEE Nanotechnology Magazine, 2011, 10, 59-62.	1.1	30
197	Versatile Electronic and Magnetic Properties of Corrugated V ₂ O ₅ Two-Dimensional Crystal and Its Derived One-Dimensional Nanoribbons: A Computational Exploration. Journal of Physical Chemistry C, 2011, 115, 11983-11990.	1.5	33
198	How Do Surface and Edge Effects Alter the Electronic Properties of GaN Nanoribbons?. Journal of Physical Chemistry C, 2011, 115, 1724-1731.	1.5	41

#	Article	IF	CITATIONS
199	Open-Shell Singlet Character of Stable Derivatives of Nonacene, Hexacene and Teranthene. Organic Letters, 2011, 13, 3316-3319.	2.4	35
200	Theoretical Design of Novel Trinuclear Sandwich Complexes with Central M ₃ Triangles (M = Ni, Pd, Pt). Journal of Physical Chemistry A, 2011, 115, 2402-2408.	1.1	25
201	Molecular Charge Transfer: A Simple and Effective Route To Engineer the Band Structures of BN Nanosheets and Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 18531-18537.	1.5	107
202	SiC ₂ Silagraphene and Its One-Dimensional Derivatives: Where Planar Tetracoordinate Silicon Happens. Journal of the American Chemical Society, 2011, 133, 900-908.	6.6	171
203	Catalytic Activities of Subnanometer Gold Clusters (Au ₁₆ –Au ₁₈ ,) Tj ETQq1 1 0.7843 7818-7829.	14 rgBT /(7.3	Overlock 10 182
204	<i>A Special Issue on</i> Structures, Properties, and Applications of Nanomaterials: A Computational Exploration. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2395-2397.	0.4	0
205	Theoretical Insights into the Structures of Graphene Oxide and Its Chemical Conversions Between Graphene. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2406-2422.	0.4	30
206	What is the best density functional to describe water clusters: evaluation of widely used density functionals with various basis sets for (H2O) n (nÂ=Â1–10). Theoretical Chemistry Accounts, 2011, 130, 341-352.	0.5	46
207	Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chemical Communications, 2010, 46, 3672.	2.2	176
208	Addition of Carbene to the Equator of C ₇₀ To Produce the Most Stable C ₇₁ H ₂ Isomer: 2 a <i>H</i> ê€2(12)aâ€Homo(C ₇₀ â€ <i>D</i> _{5<i>h</i>(6)})[5,6]fullerene. Angewa Chemie - International Edition, 2010, 49, 962-966.	ndte	25
209	Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosensors and Bioelectronics, 2010, 25, 1829-1833.	5.3	299
210	Boron fullerenes with 32–56 atoms: Irregular cage configurations and electronic properties. Chemical Physics Letters, 2010, 501, 16-19.	1.2	65
211	Hole-Mediated Hydrogen Spillover Mechanism in Metal-Organic Frameworks. Physical Review Letters, 2010, 104, 236101.	2.9	34
212	Hydrogen storage behavior of one-dimensional TiB _{<i>x</i>} chains. Nanotechnology, 2010, 21, 134006.	1.3	9
213	CO Catalytic Oxidation on Iron-Embedded Graphene: Computational Quest for Low-Cost Nanocatalysts. Journal of Physical Chemistry C, 2010, 114, 6250-6254.	1.5	454
214	Hydrogenation: A Simple Approach To Realize Semiconductorâ^'Half-Metalâ^'Metal Transition in Boron Nitride Nanoribbons. Journal of the American Chemical Society, 2010, 132, 1699-1705.	6.6	277
215	Tuning Electronic and Magnetic Properties of Wurtzite ZnO Nanosheets by Surface Hydrogenation. ACS Applied Materials & Interfaces, 2010, 2, 2442-2447.	4.0	79
216	Accuracy of density functional theory methods for weakly bonded systems: The case of dihydrogen binding on metal centers. Physical Review B, 2010, 82, .	1.1	38

#	Article	IF	CITATIONS
217	Stability of graphene oxide phases from first-principles calculations. Physical Review B, 2010, 82, .	1.1	124
218	B ₈₀ and Other Medium-Sized Boron Clusters: Coreâ^'Shell Structures, Not Hollow Cages. Journal of Physical Chemistry A, 2010, 114, 9969-9972.	1.1	143
219	Synthesis, Properties, and Bishomoaromaticity of the First Tetrahalogenated Derivative of a 1, 5-Diphosphadithiatetrazocine: A Combined Experimental and Computational Investigation. Inorganic Chemistry, 2010, 49, 3810-3815.	1.9	16
220	What Is the Preferred Structure of the Meisenheimerâ^'Wheland Complex Between <i>sym</i> -Triaminobenzene and 4,6-Dinitrobenzofuroxan?. Journal of Organic Chemistry, 2010, 75, 3761-3765.	1.7	14
221	Achieving Ferromagnetism in Single-Crystalline ZnS Wurtzite Nanowires via Chromium Doping. Journal of Physical Chemistry C, 2010, 114, 12099-12103.	1.5	31
222	A bifunctional strategy towards experimentally (synthetically) attainable molecules with planar tetracoordinate carbons. Physical Chemistry Chemical Physics, 2010, 12, 58-61.	1.3	25
223	NC unit trapped by fullerenes: a density functional theory study on Sc3NC@C2n (2n = 68, 78 and 80). Physical Chemistry Chemical Physics, 2010, 12, 12442.	1.3	35
224	Computational studies on hydrogen storage in aluminum nitride nanowires/tubes. Nanotechnology, 2009, 20, 215701.	1.3	28
225	Do all wurtzite nanotubes prefer faceted ones?. Journal of Chemical Physics, 2009, 130, 204706.	1.2	40
226	Tiâ€Substituted Boranes as Hydrogen Storage Materials: A Computational Quest for the Ideal Combination of Stable Electronic Structure and Optimal Hydrogen Uptake. Chemistry - A European Journal, 2009, 15, 5910-5919.	1.7	45
227	Firstâ€principles study of molecular hydrogen dissociation on doped Al ₁₂ X (X = B, Al, C, Si,) Tj ETQq	1 1 0.784 1.5	314 rgBT /O
228	Oxidation Unzipping of Stable Nanographenes into Joint Spin-Rich Fragments. Journal of the American Chemical Society, 2009, 131, 9663-9669.	6.6	46
229	Dichlorocarbene Addition to C ₆₀ from the Trichloromethyl Anion: Carbene Mechanism or Bingel Mechanism?. Journal of Physical Chemistry A, 2009, 113, 3673-3676.	1.1	24
230	Endohedral Metalloborofullerenes La2@B80 and Sc3N@B80: A Density Functional Theory Prediction. Journal of Physical Chemistry A, 2009, 113, 11613-11618.	1.1	29
231	Graphene Oxide as an Ideal Substrate for Hydrogen Storage. ACS Nano, 2009, 3, 2995-3000.	7.3	342
232	Spin Gapless Semiconductorâ^'Metalâ^'Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons. ACS Nano, 2009, 3, 1952-1958.	7.3	499
233	What Protects the Core When the Thiolated Au Cluster is Extremely Small?. Journal of Physical Chemistry C, 2009, 113, 16983-16987.	1.5	82
234	Homoconjugation/Homoaromaticity in Main Group Inorganic Molecules. Journal of the American Chemical Society, 2009, 131, 9789-9799.	6.6	36

#	Article	IF	CITATIONS
235	Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects. Journal of Chemical Theory and Computation, 2009, 5, 3088-3095.	2.3	127
236	Structural and Electronic Properties of Graphane Nanoribbons. Journal of Physical Chemistry C, 2009, 113, 15043-15045.	1.5	118
237	Ca-Coated Boron Fullerenes and Nanotubes as Superior Hydrogen Storage Materials. Nano Letters, 2009, 9, 1944-1948.	4.5	165
238	Insertion of C ₅₀ into singleâ€walled carbon nanotubes: Selectivity in interwall spacing and C ₅₀ isomers. Journal of Computational Chemistry, 2008, 29, 781-787.	1.5	8
239	Comparison of Isoelectronic Heterometallic and Homometallic Binuclear Cyclopentadienylmetal Carbonyls: The Iron–Nickel vs. the Dicobalt Systems. European Journal of Inorganic Chemistry, 2008, 2008, 1219-1225.	1.0	4
240	Size- and Surface-dependent Stability, Electronic Properties, and Potential as Chemical Sensors: Computational Studies on One-dimensional ZnO Nanostructures. Journal of Physical Chemistry C, 2008, 112, 13926-13931.	1.5	67
241	Sodium and Magnesium Complexes with Dianionic α-Diimine Ligands. Organometallics, 2008, 27, 5830-5835.	1.1	43
242	Stoneâ^'Wales Defects in Single-Walled Boron Nitride Nanotubes:  Formation Energies, Electronic Structures, and Reactivity. Journal of Physical Chemistry C, 2008, 112, 1365-1370.	1.5	105
243	Electronic structures of SiC nanoribbons. Journal of Chemical Physics, 2008, 129, 174114.	1.2	222
244	MoS ₂ Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties. Journal of the American Chemical Society, 2008, 130, 16739-16744.	6.6	876
245	Planar Tetracoordinate Carbon Species Involving Beryllium Substituents. Inorganic Chemistry, 2008, 47, 1332-1336.	1.9	42
246	Electron Attachment to the Hydrogenated Watsonâ^ Crick Guanine Cytosine Base Pair (GC+H): Conventional and Proton-Transferred Structures. Journal of Physical Chemistry A, 2008, 112, 6217-6226.	1.1	18
247	Comparative Study of Carbon and BN Nanographenes: Ground Electronic States and Energy Gap Engineering. Journal of Physical Chemistry C, 2008, 112, 12677-12682.	1.5	66
248	Homobenzene: Homoaromaticity and Homoantiaromaticity in Cycloheptatrienes. Journal of Physical Chemistry A, 2008, 112, 10586-10594.	1.1	36
249	Density functional theory studies of inorganic metallocene multidecker Vn(P6)n+1â€^(n=1–4) sandwich clusters. Journal of Chemical Physics, 2008, 128, 104706.	1.2	21
250	Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Nanotechnology, 2007, 18, 424023.	1.3	76
251	Myriad Planar Hexacoordinate Carbon Molecules Inviting Synthesis. Journal of the American Chemical Society, 2007, 129, 1510-1511.	6.6	80
252	Open-Shell Singlet Character of Cyclacenes and Short Zigzag Nanotubes. Organic Letters, 2007, 9, 5449-5452.	2.4	147

#	Article	IF	CITATIONS
253	Combined experimental and theoretical study of small aluminum oxygen clusters. European Physical Journal D, 2007, 45, 301-308.	0.6	23
254	To Achieve Stable Spherical Clusters:Â General Principles and Experimental Confirmations. Journal of the American Chemical Society, 2006, 128, 12829-12834.	6.6	116
255	Atomic and Electronic Structures of Fluorinated BN Nanotubes:Â Computational Study. Journal of Physical Chemistry B, 2006, 110, 25678-25685.	1.2	67
256	La2@C72and Sc2@C72:Â Computational Characterizations. Journal of Physical Chemistry A, 2006, 110, 2231-2234.	1.1	57
257	Syntheses, Structures, and Bonding of Cp2M(ER)2Compounds (Cp = C5H5; M = Ti, Zr; E = Ga, In; R =) Tj ETQq1 I	0,784314 1.1	4 rgBT /Overl
258	True Nanocable Assemblies with Insulating BN Nanotube Sheaths and Conducting Cu Nanowire Cores. Journal of Physical Chemistry B, 2006, 110, 2529-2532.	1.2	45
259	The Effect of Gas Adsorption on Carbon Nanotubes Properties. Journal of Computational and Theoretical Nanoscience, 2006, 3, 664-669.	0.4	35
260	Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes. Journal of Physical Chemistry B, 2006, 110, 13363-13369.	1.2	157
261	Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structures. ChemInform, 2006, 37, no.	0.1	0
262	Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<c60) 2006,="" 37,="" and="" carbon="" cheminform,="" nanotubes.="" no.<="" single-walled="" td=""><td>0.1</td><td>0</td></c60)>	0.1	0
263	Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. ChemInform, 2006, 37, no.	0.1	1
264	Novel Carbon Nanotube Peapods Encapsulating Au ₃₂ Golden Fullerene. Journal of Computational and Theoretical Nanoscience, 2006, 3, 459-462.	0.4	4
265	Reduced Li diffusion barriers in composite BC3 nanotubes. Chemical Physics Letters, 2005, 415, 323-326.	1.2	34
266	Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structuresâ€. Chemical Reviews, 2005, 105, 3613-3642.	23.0	436
267	Engineering the Electronic Structure of Single-Walled Carbon Nanotubes by Chemical Functionalization. ChemPhysChem, 2005, 6, 598-601.	1.0	71
268	Aromatic Boron Wheels with More than One Carbon Atom in the Center: C 2 B 8 , C 3 B 9 3+ , and C 5 B 11 +. Angewandte Chemie - International Edition, 2005, 44, 1078-1082.	7.2	100
269	Aromatic Boron Wheels with More than One Carbon Atom in the Center: C 2 B 8 , C 3 B 9 3+ , and C 5 B 11 +. Angewandte Chemie, 2005, 117, 1102-1106.	1.6	18
270	Preparation of [5,6]- and [6,6]-Oxahomofullerene Derivatives and Their Interconversion by Lewis Acid Assisted Reactions of Fullerene Mixed Peroxides. Chemistry - A European Journal, 2005, 11, 5449-5456.	1.7	45

#	Article	IF	CITATIONS
271	ISOLOBAL BORON CARBONYL CARBOCATION ANALOGS. Journal of Theoretical and Computational Chemistry, 2005, 04, 669-688.	1.8	20
272	Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius [4n]Annulene Aromaticity. Journal of the American Chemical Society, 2005, 127, 2425-2432.	6.6	100
273	Hollow Cages versus Space-Filling Structures for Medium-Sized Gold Clusters:  The Spherical Aromaticity of the Au50 Cage. Journal of Physical Chemistry A, 2005, 109, 9265-9269.	1.1	101
274	Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chemical Reviews, 2005, 105, 3842-3888.	23.0	2,815
275	Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<c60) 105,="" 2005,="" 3643-3696.<="" and="" carbon="" chemical="" nanotubes.="" reviews,="" single-walled="" td=""><td>23.0</td><td>517</td></c60)>	23.0	517
276	Do Composite Single-Walled Nanotubes Have Enhanced Capability for Lithium Storage?. Chemistry of Materials, 2005, 17, 992-1000.	3.2	117
277	Are Stoneâ^'Wales Defect Sites Always More Reactive Than Perfect Sites in the Sidewalls of Single-Wall Carbon Nanotubes?. Journal of the American Chemical Society, 2005, 127, 20-21.	6.6	135
278	A Metallocene-Complexed Dibismuthene: Cp2Zr(BiR)2(Cp = C5H5; R = C6H3-2,6-Mes2). Journal of the American Chemical Society, 2005, 127, 7672-7673.	6.6	31
279	Extremely Stable Metal-EncapsulatedAlPb10+andAlPb12+Clusters: Mass-Spectrometric Discovery and Density Functional Theory Study. Physical Review Letters, 2004, 92, 163401.	2.9	169
280	Side-Wall Opening of Single-Walled Carbon Nanotubes (SWCNTs) by Chemical Modification: A Critical Theoretical Study. Angewandte Chemie - International Edition, 2004, 43, 1552-1554.	7.2	105
281	The Smaller Fullerene C50, Isolated as C50Cl10. Angewandte Chemie - International Edition, 2004, 43, 4690-1.	7.2	12
282	Do All-Metal Antiaromatic Clusters Exist?. ChemInform, 2004, 35, no.	0.1	0
283	Spherical Sila- and Germa-Homoaromaticity. ChemInform, 2004, 35, no.	0.1	0
284	Structure and Bonding in the Omnicapped Truncated Tetrahedral Au20 Cluster: Analogies Between Gold and Carbon Cluster Chemistry ChemInform, 2004, 35, no.	0.1	0
285	Theoretical Studies on the Smallest Fullerene: from Monomer to Oligomers and Solid States. Chemistry - A European Journal, 2004, 10, 963-970.	1.7	90
286	Aromaticity Indices from Magnetic Shieldings. , 2004, , 395-407.		10
287	Properties of Fullerene[50] andD5hDecachlorofullerene[50]:Â A Computational Study. Journal of the American Chemical Society, 2004, 126, 14871-14878.	6.6	133
288	Structure and Bonding in the Omnicapped Truncated Tetrahedral Au20Cluster:Â Analogies between Gold and Carbon Cluster Chemistry. Inorganic Chemistry, 2004, 43, 4564-4566.	1.9	54

#	Article	IF	CITATIONS
289	Tuning spectral properties of fullerenes by substitutional doping. Physical Review B, 2004, 69, .	1.1	37
290	Study on the optical and magnetic properties of C48N12azafullerene isomers. Physical Chemistry Chemical Physics, 2004, 6, 4566-4570.	1.3	18
291	Structures and magnetic properties of mono-doped fullerenes C59X n and C59X(6â^'n)â^' (X=Bâ^', N+, P+,) Tj ETQ	q110.78	4314 rgBT
292	Reactivity of the Convex and Concave Surfaces of Single-Walled Carbon Nanotubes (SWCNTs) towards Addition Reactions: Dependence on the Carbon-Atom Pyramidalization. ChemPhysChem, 2003, 4, 93-97.	1.0	177
293	The structure and stability of Si60and Ge60cages: A computational study. Journal of Computational Chemistry, 2003, 24, 948-953.	1.5	40
294	Fullerene Anions of Different Sizes and Shapes: A13C NMR and Density-Functional Study ChemInform, 2003, 34, no.	0.1	0
295	Performance of semiempirical methods in fullerene chemistry: relative energies and nucleus-independent chemical shifts. Chemical Physics Letters, 2003, 367, 15-25.	1.2	74
296	Aromatic stabilization in heterofullerenes C48X12(X = N, P, B, Si). Journal of Physical Organic Chemistry, 2003, 16, 726-730.	0.9	35
297	Do All-Metal Antiaromatic Clusters Exist?. Journal of the American Chemical Society, 2003, 125, 13930-13931.	6.6	131
298	Spherical Sila- and Germa-Homoaromaticity. Journal of the American Chemical Society, 2003, 125, 15507-15511.	6.6	38
299	Fullerene Anions of Different Sizes and Shapes:Â A13C NMR and Density-Functional Study. Journal of Organic Chemistry, 2003, 68, 4850-4854.	1.7	25
300	A Theoretical and Structural Investigation of Thiocarbon Anions. Journal of Organic Chemistry, 2003, 68, 8808-8814.	1.7	23
301	On the Viability of Small Endohedral Hydrocarbon Cage Complexes:Â X@C4H4, X@C8H8, X@C8H14, X@C10H16, X@C12H12, and X@C16H16. Journal of the American Chemical Society, 2003, 125, 11442-11451.	6.6	45
302	Structures and Stabilities of Endo- and Exohedral Dodecahedrane Complexes (X@C20H20 and) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 22
303	Spherical Aromaticity — An Overview. Developments in Fullerence Science, 2002, , 121-135.	0.5	5
304	Oxa- and thia-fullerenes (C59O, C59S): Closed or opened cages?. Physical Chemistry Chemical Physics, 2002, 4, 4916-4920.	1.3	24
305	Spherical Homoaromaticity. Angewandte Chemie, 2002, 114, 4485-4488.	1.6	11
306	Spherical Homoaromaticity. Angewandte Chemie - International Edition, 2002, 41, 4309-4312.	7.2	46

#	Article	IF	CITATIONS
307	Isomerism and aromaticity of heterofullerene C 70- n P n (n =2-10). Journal of Molecular Modeling, 2002, 8, 223-229.	0.8	8
308	BN-Doped Fullerenes:Â An NICS Characterization. Journal of Organic Chemistry, 2001, 66, 3380-3383.	1.7	47
309	Theoretical Studies on the Substitution Patterns in Heterofullerenes C70-xNxand C70-xBx(x= 2â^10). Journal of Physical Chemistry A, 2001, 105, 8105-8110.	1.1	26
310	Endohedral chemical shifts in higher fullerenes with 72-86 carbon atoms. Theoretical Chemistry Accounts, 2001, 106, 364-368.	0.5	67
311	Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues. Theoretical Chemistry Accounts, 2001, 106, 352-363.	0.5	76
312	The 2(N+1)2 rule for spherical aromaticity: further validation. Journal of Molecular Modeling, 2001, 7, 161-163.	0.8	82
313	Spherical Aromaticity of Inorganic Cage Molecules. Angewandte Chemie - International Edition, 2001, 40, 2834-2838.	7.2	169
314	Spherical Aromaticity inlh Symmetrical Fullerenes: The 2(N+1)2 Rule. Angewandte Chemie - International Edition, 2000, 39, 3915-3917.	7.2	382
315	Fullerenes C36n (n=0,2+,2â^') and their B- and N-doped analogues. Chemical Physics Letters, 2000, 329, 47-51.	1.2	22
316	Structures and stabilities of C 60 (OH) 4 and C 60 (OH) 6 fullerenols. Computational and Theoretical Chemistry, 2000, 498, 227-232.	1.5	9
317	Semi-empirical calculations on the BN substituted fullerenes C60â^'2x(BN)x (x=1–3) — isoelectronic equivalents of C60. Computational and Theoretical Chemistry, 1999, 466, 127-135.	1.5	34
318	Theoretical studies on the BN substituted fullerenes C70â^'2x(BN)x (x=1–3)—isoelectronic equivalents of C70. Computational and Theoretical Chemistry, 1999, 490, 61-68.	1.5	20
319	Theoretical studies of heterofullerenes C68X2 (X = N, B). Canadian Journal of Chemistry, 1999, 77, 291-298.	0.6	18
320	Theoretical Studies of the Substitution Patterns in Heterofullerenes C60-xNxand C60-xBx(x= 2â^'8). Journal of Physical Chemistry A, 1999, 103, 10961-10968.	1.1	60
321	Theoretical studies on the substituted fullerene C60â^'xâ^'yBxNy(x+y=2). Computational and Theoretical Chemistry, 1998, 452, 219-225.	1.5	30
322	Calculations on all possible isomers of the substituted fullerenes C58X2 (X=N,B) using semiempirical methods. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2269-2276.	1.7	43