
Zhong-Fang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087596/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chemical Reviews, 2005, 105, 3842-3888.	47.7	2,815
2	Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Bandâ€Gap Transitions. Angewandte Chemie - International Edition, 2015, 54, 3112-3115.	13.8	1,211
3	Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy and Environmental Science, 2019, 12, 322-333.	30.8	1,078
4	Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. Journal of the American Chemical Society, 2017, 139, 12480-12487.	13.7	1,006
5	MoS ₂ Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties. Journal of the American Chemical Society, 2008, 130, 16739-16744.	13.7	876
6	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	38.1	697
7	Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. Journal of the American Chemical Society, 2020, 142, 5709-5721.	13.7	664
8	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie - International Edition, 2016, 55, 1666-1669.	13.8	651
9	Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5, 4541.	5.6	614
10	Metallic VS ₂ Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 25409-25413.	3.1	576
11	Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<c60) 105,="" 2005,="" 3643-3696.<="" and="" carbon="" chemical="" nanotubes.="" reviews,="" single-walled="" td=""><td>47.7</td><td>517</td></c60)>	47.7	517
12	Spin Gapless Semiconductorâ^'Metalâ^'Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons. ACS Nano, 2009, 3, 1952-1958.	14.6	499
13	CO Catalytic Oxidation on Iron-Embedded Graphene: Computational Quest for Low-Cost Nanocatalysts. Journal of Physical Chemistry C, 2010, 114, 6250-6254.	3.1	454
14	Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structuresâ€. Chemical Reviews, 2005, 105, 3613-3642.	47.7	436
15	Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Bandâ€Gap Transitions. Angewandte Chemie, 2015, 127, 3155-3158.	2.0	397
16	Enhanced Li Adsorption and Diffusion on MoS ₂ Zigzag Nanoribbons by Edge Effects: A Computational Study. Journal of Physical Chemistry Letters, 2012, 3, 2221-2227.	4.6	390
17	Spherical Aromaticity inlh Symmetrical Fullerenes: The 2(N+1)2 Rule. Angewandte Chemie - International Edition, 2000, 39, 3915-3917.	13.8	382
18	Computational Screening of Efficient Singleâ€Atom Catalysts Based on Graphitic Carbon Nitride (g ₃ N ₄) for Nitrogen Electroreduction. Small Methods, 2019, 3, 1800368.	8.6	347

#	Article	IF	CITATIONS
19	Graphene Oxide as an Ideal Substrate for Hydrogen Storage. ACS Nano, 2009, 3, 2995-3000.	14.6	342
20	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie, 2016, 128, 1698-1701.	2.0	315
21	Simultaneously Achieving High Activity and Selectivity toward Two-Electron O ₂ Electroreduction: The Power of Single-Atom Catalysts. ACS Catalysis, 2019, 9, 11042-11054.	11.2	314
22	Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosensors and Bioelectronics, 2010, 25, 1829-1833.	10.1	299
23	Tuning Electronic Structure of Bilayer MoS ₂ by Vertical Electric Field: A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 21556-21562.	3.1	297
24	Hydrogenation: A Simple Approach To Realize Semiconductorâ^'Half-Metalâ^'Metal Transition in Boron Nitride Nanoribbons. Journal of the American Chemical Society, 2010, 132, 1699-1705.	13.7	277
25	Graphene, inorganic graphene analogs and their composites for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 12104.	10.3	251
26	Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Letters, 2017, 17, 3434-3440.	9.1	250
27	Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio. Nature Communications, 2016, 7, 11488.	12.8	247
28	Be ₂ C Monolayer with Quasiâ€Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie - International Edition, 2014, 53, 7248-7252.	13.8	223
29	Electronic structures of SiC nanoribbons. Journal of Chemical Physics, 2008, 129, 174114.	3.0	222
30	Graphene-like Two-Dimensional Ionic Boron with Double Dirac Cones at Ambient Condition. Nano Letters, 2016, 16, 3022-3028.	9.1	222
31	FeB ₆ Monolayers: The Graphene-like Material with Hypercoordinate Transition Metal. Journal of the American Chemical Society, 2016, 138, 5644-5651.	13.7	219
32	Four Decades of the Chemistry of Planar Hypercoordinate Compounds. Angewandte Chemie - International Edition, 2015, 54, 9468-9501.	13.8	217
33	Exploration of High-Performance Single-Atom Catalysts on Support M ₁ /FeO _{<i>x</i>} for CO Oxidation via Computational Study. ACS Catalysis, 2015, 5, 544-552.	11.2	217
34	PdSeO ₃ Monolayer: Promising Inorganic 2D Photocatalyst for Direct Overall Water Splitting Without Using Sacrificial Reagents and Cocatalysts. Journal of the American Chemical Society, 2018, 140, 12256-12262.	13.7	216
35	Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance Ultracapacitors. ACS Nano, 2014, 8, 8255-8265.	14.6	212
36	Innovation and discovery of grapheneâ€like materials via densityâ€functional theory computations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 360-379.	14.6	205

#	Article	IF	CITATIONS
37	Dirac State in the FeB ₂ Monolayer with Graphene-Like Boron Sheet. Nano Letters, 2016, 16, 6124-6129.	9.1	200
38	Fe-Anchored Graphene Oxide: A Low-Cost and Easily Accessible Catalyst for Low-Temperature CO Oxidation. Journal of Physical Chemistry C, 2012, 116, 2507-2514.	3.1	189
39	Catalytic Activities of Subnanometer Gold Clusters (Au ₁₆ –Au ₁₈ ,) Tj ETQq1 1 0.7843 7818-7829.	14 rgBT /0 14.6	Overlock 10 182
40	Reactivity of the Convex and Concave Surfaces of Single-Walled Carbon Nanotubes (SWCNTs) towards Addition Reactions: Dependence on the Carbon-Atom Pyramidalization. ChemPhysChem, 2003, 4, 93-97.	2.1	177
41	Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chemical Communications, 2010, 46, 3672.	4.1	176
42	SiC ₂ Silagraphene and Its One-Dimensional Derivatives: Where Planar Tetracoordinate Silicon Happens. Journal of the American Chemical Society, 2011, 133, 900-908.	13.7	171
43	Spherical Aromaticity of Inorganic Cage Molecules. Angewandte Chemie - International Edition, 2001, 40, 2834-2838.	13.8	169
44	Extremely Stable Metal-EncapsulatedAlPb10+andAlPb12+Clusters: Mass-Spectrometric Discovery and Density Functional Theory Study. Physical Review Letters, 2004, 92, 163401.	7.8	169
45	Copper Dimer Supported on a C ₂ N Layer as an Efficient Electrocatalyst for CO ₂ Reduction Reaction: A Computational Study. Journal of Physical Chemistry C, 2018, 122, 19712-19721.	3.1	167
46	Ca-Coated Boron Fullerenes and Nanotubes as Superior Hydrogen Storage Materials. Nano Letters, 2009, 9, 1944-1948.	9.1	165
47	Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale, 2015, 7, 11633-11641.	5.6	164
48	Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes. Journal of Physical Chemistry B, 2006, 110, 13363-13369.	2.6	157
49	Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study. Journal of Materials Chemistry A, 2016, 4, 6124-6130.	10.3	156
50	Quantum spin hall insulators in strain-modified arsenene. Nanoscale, 2015, 7, 19152-19159.	5.6	151
51	B80 and B101–103 clusters: Remarkable stability of the core-shell structures established by validated density functionals. Journal of Chemical Physics, 2012, 136, 074302.	3.0	150
52	Boosting ORR/OER Activity of Graphdiyne by Simple Heteroatom Doping. Small Methods, 2019, 3, 1800550.	8.6	149
53	Open-Shell Singlet Character of Cyclacenes and Short Zigzag Nanotubes. Organic Letters, 2007, 9, 5449-5452.	4.6	147
54	Carbon-Doped Boron Nitride Nanosheet: An Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 26348-26354.	3.1	144

#	Article	IF	CITATIONS
55	Component Matters: Paving the Roadmap toward Enhanced Electrocatalytic Performance of Graphitic C ₃ N ₄ -Based Catalysts <i>via</i> Atomic Tuning. ACS Nano, 2017, 11, 6004-6014.	14.6	144
56	B ₈₀ and Other Medium-Sized Boron Clusters: Coreâ^'Shell Structures, Not Hollow Cages. Journal of Physical Chemistry A, 2010, 114, 9969-9972.	2.5	143
57	Are Stoneâ^Wales Defect Sites Always More Reactive Than Perfect Sites in the Sidewalls of Single-Wall Carbon Nanotubes?. Journal of the American Chemical Society, 2005, 127, 20-21.	13.7	135
58	Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS ₂ monolayer. Journal of Materials Chemistry C, 2015, 3, 9603-9608.	5.5	135
59	Properties of Fullerene[50] andD5hDecachlorofullerene[50]:Â A Computational Study. Journal of the American Chemical Society, 2004, 126, 14871-14878.	13.7	133
60	Do All-Metal Antiaromatic Clusters Exist?. Journal of the American Chemical Society, 2003, 125, 13930-13931.	13.7	131
61	Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries. Electrochimica Acta, 2014, 147, 392-400.	5.2	129
62	Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects. Journal of Chemical Theory and Computation, 2009, 5, 3088-3095.	5.3	127
63	CO Oxidation on TiO ₂ (110) Supported Subnanometer Gold Clusters: Size and Shape Effects. Journal of the American Chemical Society, 2013, 135, 19336-19346.	13.7	127
64	Flexible structural and electronic properties of a pentagonal B ₂ C monolayer via external strain: a computational investigation. Physical Chemistry Chemical Physics, 2015, 17, 24151-24156.	2.8	127
65	Stability of graphene oxide phases from first-principles calculations. Physical Review B, 2010, 82, .	3.2	124
66	Structural and Electronic Properties of Graphane Nanoribbons. Journal of Physical Chemistry C, 2009, 113, 15043-15045.	3.1	118
67	Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Physical Review B, 2016, 93, .	3.2	118
68	Do Composite Single-Walled Nanotubes Have Enhanced Capability for Lithium Storage?. Chemistry of Materials, 2005, 17, 992-1000.	6.7	117
69	To Achieve Stable Spherical Clusters:Â General Principles and Experimental Confirmations. Journal of the American Chemical Society, 2006, 128, 12829-12834.	13.7	116
70	Amorphous structural models for graphene oxides. Carbon, 2012, 50, 1690-1698.	10.3	114
71	Versatile Electronic Properties of VSe ₂ Bulk, Few-Layers, Monolayer, Nanoribbons, and Nanotubes: A Computational Exploration. Journal of Physical Chemistry C, 2014, 118, 21264-21274.	3.1	114
72	Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. Journal of Materials Chemistry A, 2016, 4, 12205-12211.	10.3	112

#	Article	IF	CITATIONS
73	Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. Journal of Materials Chemistry A, 2020, 8, 5663-5670.	10.3	112
74	Appropriate description of intermolecular interactions in the methane hydrates: An assessment of DFT methods. Journal of Computational Chemistry, 2013, 34, 121-131.	3.3	111
75	Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nature Communications, 2021, 12, 5128.	12.8	110
76	Nonvolatile Electrical Control and Heterointerfaceâ€Induced Halfâ€Metallicity of 2D Ferromagnets. Advanced Functional Materials, 2019, 29, 1901420.	14.9	109
77	Molecular Charge Transfer: A Simple and Effective Route To Engineer the Band Structures of BN Nanosheets and Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 18531-18537.	3.1	107
78	Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping. Electrochimica Acta, 2017, 225, 543-550.	5.2	106
79	Side-Wall Opening of Single-Walled Carbon Nanotubes (SWCNTs) by Chemical Modification: A Critical Theoretical Study. Angewandte Chemie - International Edition, 2004, 43, 1552-1554.	13.8	105
80	Stoneâ^'Wales Defects in Single-Walled Boron Nitride Nanotubes:  Formation Energies, Electronic Structures, and Reactivity. Journal of Physical Chemistry C, 2008, 112, 1365-1370.	3.1	105
81	Graphane/Fluorographene Bilayer: Considerable C–H···F–C Hydrogen Bonding and Effective Band Structure Engineering. Journal of the American Chemical Society, 2012, 134, 11269-11275.	13.7	105
82	Hollow Cages versus Space-Filling Structures for Medium-Sized Gold Clusters:  The Spherical Aromaticity of the Au50 Cage. Journal of Physical Chemistry A, 2005, 109, 9265-9269.	2.5	101
83	Aromatic Boron Wheels with More than One Carbon Atom in the Center: C 2 B 8 , C 3 B 9 3+ , and C 5 B 11 +. Angewandte Chemie - International Edition, 2005, 44, 1078-1082.	13.8	100
84	Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius [4n]Annulene Aromaticity. Journal of the American Chemical Society, 2005, 127, 2425-2432.	13.7	100
85	How does the B,F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C ₃ N ₄ ?. Physical Chemistry Chemical Physics, 2016, 18, 19217-19226.	2.8	99
86	A Co–N ₄ moiety embedded into graphene as an efficient single-atom-catalyst for NO electrochemical reduction: a computational study. Journal of Materials Chemistry A, 2018, 6, 7547-7556.	10.3	99
87	Selectivity trend of gas separation through nanoporous graphene. Journal of Solid State Chemistry, 2015, 224, 2-6.	2.9	97
88	Establishing a Theoretical Landscape for Identifying Basal Plane Active 2D Metal Borides (MBenes) toward Nitrogen Electroreduction. Advanced Functional Materials, 2021, 31, 2008056.	14.9	97
89	Identifying the Activity Origin of a Cobalt Singleâ€Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Advanced Functional Materials, 2021, 31, 2100547.	14.9	93
90	Tuning Electronic Properties of Germanane Layers by External Electric Field and Biaxial Tensile Strain: A Computational Study. Journal of Physical Chemistry C, 2014, 118, 1148-1154.	3.1	92

#	Article	IF	CITATIONS
91	1 + 1′ > 2: Heteronuclear Biatom Catalyst Outperforms Its Homonuclear Counterparts for CO Oxidation. Small Methods, 2019, 3, 1800480.	8.6	92
92	Theoretical Studies on the Smallest Fullerene: from Monomer to Oligomers and Solid States. Chemistry - A European Journal, 2004, 10, 963-970.	3.3	90
93	B-terminated (111) polar surfaces of BP and BAs: promising metal-free electrocatalysts with large reaction regions for nitrogen fixation. Journal of Materials Chemistry A, 2019, 7, 13284-13292.	10.3	87
94	Magnetic properties of atomic clusters and endohedral metallofullerenes. Coordination Chemistry Reviews, 2015, 289-290, 315-340.	18.8	86
95	Holey graphene: a unique structural derivative of graphene. Materials Research Letters, 2017, 5, 209-234.	8.7	85
96	Enhanced Ferromagnetism and Tunable Magnetism in Fe ₃ GeTe ₂ Monolayer by Strain Engineering. ACS Applied Materials & Interfaces, 2020, 12, 26367-26373.	8.0	83
97	The 2(N+1)2 rule for spherical aromaticity: further validation. Journal of Molecular Modeling, 2001, 7, 161-163.	1.8	82
98	What Protects the Core When the Thiolated Au Cluster is Extremely Small?. Journal of Physical Chemistry C, 2009, 113, 16983-16987.	3.1	82
99	XH/΀ (X = C, Si) Interactions in Graphene and Silicene: Weak in Strength, Strong in Tuning Band Structures. Journal of Physical Chemistry Letters, 2013, 4, 269-275.	4.6	82
100	Al ₂ C monolayer: the planar tetracoordinate carbon global minimum. Nanoscale, 2014, 6, 10784.	5.6	82
101	An Improbable Monometallic Cluster Entrapped in a Popular Fullerene Cage: YCN@Cs(6)-C82. Scientific Reports, 2013, 3, 1487.	3.3	81
102	Two-Dimensional Y ₂ C Electride: A Promising Anode Material for Na-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 18473-18478.	3.1	81
103	Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet. Journal of Physical Chemistry Letters, 2017, 8, 1707-1713.	4.6	81
104	Highly Efficient Photocatalytic Degradation of Dyes by a Copper–Triazolate Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 16804-16813.	3.3	81
105	Myriad Planar Hexacoordinate Carbon Molecules Inviting Synthesis. Journal of the American Chemical Society, 2007, 129, 1510-1511.	13.7	80
106	Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study. Physical Chemistry Chemical Physics, 2014, 16, 13465.	2.8	80
107	Tuning Electronic and Magnetic Properties of Wurtzite ZnO Nanosheets by Surface Hydrogenation. ACS Applied Materials & Interfaces, 2010, 2, 2442-2447.	8.0	79
108	Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 8902-8912.	2.8	79

#	Article	IF	CITATIONS
109	Comparative density functional theory study on the electronic and optical properties of BiMO4 (M =) Tj ETQq1	1 0.784314	4 rggT /Overla
110	Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues. Theoretical Chemistry Accounts, 2001, 106, 352-363.	1.4	76
111	Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Nanotechnology, 2007, 18, 424023.	2.6	76
112	Performance of semiempirical methods in fullerene chemistry: relative energies and nucleus-independent chemical shifts. Chemical Physics Letters, 2003, 367, 15-25.	2.6	74
113	Carbon atoms trapped in cages: Metal carbide clusterfullerenes. Coordination Chemistry Reviews, 2014, 270-271, 89-111.	18.8	73
114	Molecular Crowding Effect in Aqueous Electrolytes to Suppress Hydrogen Reduction Reaction and Enhance Electrochemical Nitrogen Reduction. Advanced Energy Materials, 2021, 11, 2101699.	19.5	73
115	Engineering the Electronic Structure of Single-Walled Carbon Nanotubes by Chemical Functionalization. ChemPhysChem, 2005, 6, 598-601.	2.1	71
116	Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. Journal of Materials Chemistry A, 2020, 8, 24563-24571.	10.3	71
117	Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties. Nanoscale, 2019, 11, 8260-8269.	5.6	70
118	Designing high-voltage carbonyl-containing polycyclic aromatic hydrocarbon cathode materials for Li-ion batteries guided by Clar's theory. Journal of Materials Chemistry A, 2015, 3, 19137-19143.	10.3	68
119	Cu dimer anchored on C ₂ N monolayer: low-cost and efficient Bi-atom catalyst for CO oxidation. Nanoscale, 2018, 10, 15696-15705.	5.6	68
120	Endohedral chemical shifts in higher fullerenes with 72-86 carbon atoms. Theoretical Chemistry Accounts, 2001, 106, 364-368.	1.4	67
121	Atomic and Electronic Structures of Fluorinated BN Nanotubes:Â Computational Study. Journal of Physical Chemistry B, 2006, 110, 25678-25685.	2.6	67
122	Size- and Surface-dependent Stability, Electronic Properties, and Potential as Chemical Sensors: Computational Studies on One-dimensional ZnO Nanostructures. Journal of Physical Chemistry C, 2008, 112, 13926-13931.	3.1	67
123	Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes. Advanced Functional Materials, 2014, 24, 4497-4506.	14.9	67
124	Single Layer Bismuth Iodide: Computational Exploration of Structural, Electrical, Mechanical and Optical Properties. Scientific Reports, 2015, 5, 17558.	3.3	67
125	Comparative Study of Carbon and BN Nanographenes: Ground Electronic States and Energy Gap Engineering. Journal of Physical Chemistry C, 2008, 112, 12677-12682.	3.1	66
126	Boron fullerenes with 32–56 atoms: Irregular cage configurations and electronic properties. Chemical Physics Letters, 2010, 501, 16-19.	2.6	65

#	Article	IF	CITATIONS
127	Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: a computational investigation. Nanoscale, 2013, 5, 5321.	5.6	65
128	Highly porous, low band-gap Ni _x Mn _{3â^'x} O ₄ (0.55 ≤i>x≤1.2) spinel nanoparticles with <i>in situ</i> coated carbon as advanced cathode materials for zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 17854-17866.	10.3	65
129	Predicting Novel 2D MB ₂ (M = Ti, Hf, V, Nb, Ta) Monolayers with Ultrafast Dirac Transport Channel and Electron-Orbital Controlled Negative Poisson's Ratio. Journal of Physical Chemistry Letters, 2019, 10, 2567-2573.	4.6	65
130	Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field. Nanoscale, 2014, 6, 8624-8634.	5.6	64
131	Metallic BSi ₃ Silicene: A Promising High Capacity Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 25836-25843.	3.1	62
132	Computational investigation on the endohedral borofullerenes M@B40 (MÂ=ÂSc, Y, La). Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	61
133	Theoretical Studies of the Substitution Patterns in Heterofullerenes C60-xNxand C60-xBx(x= 2â^'8). Journal of Physical Chemistry A, 1999, 103, 10961-10968.	2.5	60
134	Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction. Frontiers of Physics, 2018, 13, 1.	5.0	60
135	Is C60 buckminsterfullerene aromatic?. Physical Chemistry Chemical Physics, 2012, 14, 14886.	2.8	58
136	Oxidative Etching of Hexagonal Boron Nitride Toward Nanosheets with Defined Edges and Holes. Scientific Reports, 2015, 5, 14510.	3.3	58
137	La2@C72and Sc2@C72:Â Computational Characterizations. Journal of Physical Chemistry A, 2006, 110, 2231-2234.	2.5	57
138	Tetra-silicene: A Semiconducting Allotrope of Silicene with Negative Poisson's Ratios. Journal of Physical Chemistry C, 2017, 121, 9627-9633.	3.1	57
139	Structure and Bonding in the Omnicapped Truncated Tetrahedral Au20Cluster:Â Analogies between Gold and Carbon Cluster Chemistry. Inorganic Chemistry, 2004, 43, 4564-4566.	4.0	54
140	Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coordination Chemistry Reviews, 2019, 388, 406-439.	18.8	54
141	Evaluation procedure of photocatalysts for VOCs degradation from the view of density functional theory calculations: g-C ₃ N ₄ dots/graphene as an example. Journal of Materials Chemistry A, 2020, 8, 20363-20372.	10.3	54
142	Planar Hypercoordinate Motifs in Two-Dimensional Materials. Accounts of Chemical Research, 2020, 53, 887-895.	15.6	54
143	Aromaticity and Antiaromaticity in Zintl Clusters. Chemistry - A European Journal, 2018, 24, 14583-14597.	3.3	52
144	Singleâ^'sided fluorine–functionalized graphene: A metal–free electrocatalyst with high efficiency for oxygen reduction reaction. Carbon, 2016, 104, 56-63.	10.3	51

45

#	Article	IF	CITATIONS
145	A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon. Nanoscale Horizons, 2018, 3, 327-334.	8.0	51
146	Firstâ€principles study of molecular hydrogen dissociation on doped Al ₁₂ X (X = B, Al, C, Si,) Tj ETQq	0 0 0 rgBT	/Overlock 1
147	Predicting a new phase (T′′) of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition. Nanoscale, 2016, 8, 4969-4975.	5.6	50
148	A two-dimensional TiB ₄ monolayer exhibits planar octacoordinate Ti. Nanoscale, 2017, 9, 17983-17990.	5.6	50
149	Mechanical properties and stabilities of g-ZnS monolayers. RSC Advances, 2015, 5, 11240-11247.	3.6	49
150	Two-Dimensional C ₄ N Global Minima: Unique Structural Topologies and Nanoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 2669-2674.	3.1	49
151	BN-Doped Fullerenes:Â An NICS Characterization. Journal of Organic Chemistry, 2001, 66, 3380-3383.	3.2	47
152	Highâ€Performance Ru ₁ /CeO ₂ Singleâ€Atom Catalyst for CO Oxidation: A Computational Exploration. ChemPhysChem, 2016, 17, 3170-3175.	2.1	47
153	Spherical Homoaromaticity. Angewandte Chemie - International Edition, 2002, 41, 4309-4312.	13.8	46
154	Oxidation Unzipping of Stable Nanographenes into Joint Spin-Rich Fragments. Journal of the American Chemical Society, 2009, 131, 9663-9669.	13.7	46
155	What is the best density functional to describe water clusters: evaluation of widely used density functionals with various basis sets for (H2O) n (nÂ=Â1–10). Theoretical Chemistry Accounts, 2011, 130, 341-352.	1.4	46
156	Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency. Nano Energy, 2018, 51, 489-495.	16.0	46
157	On the Viability of Small Endohedral Hydrocarbon Cage Complexes:Â X@C4H4, X@C8H8, X@C8H14, X@C10H16, X@C12H12, and X@C16H16. Journal of the American Chemical Society, 2003, 125, 11442-11451.	13.7	45
158	Preparation of [5,6]- and [6,6]-Oxahomofullerene Derivatives and Their Interconversion by Lewis Acid Assisted Reactions of Fullerene Mixed Peroxides. Chemistry - A European Journal, 2005, 11, 5449-5456.	3.3	45
159	True Nanocable Assemblies with Insulating BN Nanotube Sheaths and Conducting Cu Nanowire Cores. Journal of Physical Chemistry B, 2006, 110, 2529-2532.	2.6	45
160	Ti‣ubstituted Boranes as Hydrogen Storage Materials: A Computational Quest for the Ideal Combination of Stable Electronic Structure and Optimal Hydrogen Uptake. Chemistry - A European Journal, 2009, 15, 5910-5919.	3.3	45
161	Frustrated Lewis Pair Catalysts in Two Dimensions: B/Al-Doped Phosphorenes as Promising Catalysts for Hydrogenation of Small Unsaturated Molecules. ACS Catalysis, 2017, 7, 766-771.	11.2	45

162Coordination tailoring towards efficient single-atom catalysts for N2 fixation: A case study of
iron-nitrogen-carbon (Fe@N-C) systems. Catalysis Today, 2020, 350, 91-99.4.4

#	Article	IF	CITATIONS
163	Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B ₇ P ₂ monolayer with suitable pore size and distribution. Journal of Materials Chemistry A, 2020, 8, 10301-10309.	10.3	44
164	Calculations on all possible isomers of the substituted fullerenes C58X2 (X=N,B) using semiempirical methods. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2269-2276.	1.7	43
165	Sodium and Magnesium Complexes with Dianionic α-Diimine Ligands. Organometallics, 2008, 27, 5830-5835.	2.3	43
166	Structures and Stabilities of Endo- and Exohedral Dodecahedrane Complexes (X@C20H20 and) Tj ETQq0 0 0 rgE	ST /Overloo 2.5	ck 10 Tf 50 63 42
167	Planar Tetracoordinate Carbon Species Involving Beryllium Substituents. Inorganic Chemistry, 2008, 47, 1332-1336.	4.0	42
168	Oxygen Evolution Reaction on 2D Ferromagnetic Fe ₃ GeTe ₂ : Boosting the Reactivity by the Selfâ€Reduction of Surface Hydroxyl. Advanced Functional Materials, 2019, 29, 1904782.	14.9	42
169	Penta-MS ₂ (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson's ratios and tunable bandgaps as water-splitting photocatalysts. Journal of Materials Chemistry A, 2021, 9, 6993-7004.	10.3	42
170	How Do Surface and Edge Effects Alter the Electronic Properties of GaN Nanoribbons?. Journal of Physical Chemistry C, 2011, 115, 1724-1731.	3.1	41
171	The structure and stability of Si60and Ge60cages: A computational study. Journal of Computational Chemistry, 2003, 24, 948-953.	3.3	40
172	Syntheses, Structures, and Bonding of Cp2M(ER)2Compounds (Cp = C5H5; M = Ti, Zr; E = Ga, In; R =) Tj ETQq0 (0 0 rgBT /(2 .9	Overlock 10 T 40
173	Do all wurtzite nanotubes prefer faceted ones?. Journal of Chemical Physics, 2009, 130, 204706.	3.0	40
174	Predicting a graphene-like WB4 nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin–orbit coupling. Physical Chemistry Chemical Physics, 2017, 19, 5449-5453.	2.8	40
175	Spherical Sila- and Germa-Homoaromaticity. Journal of the American Chemical Society, 2003, 125, 15507-15511.	13.7	38
176	Accuracy of density functional theory methods for weakly bonded systems: The case of dihydrogen binding on metal centers. Physical Review B, 2010, 82, .	3.2	38
177	Patterned Partially Hydrogenated Graphene (C ₄ H) and Its One-Dimensional Analogues: A Computational Study. Journal of Physical Chemistry C, 2012, 116, 4526-4534.	3.1	38
178	Unveiling Adsorption Mechanisms of Organic Pollutants onto Carbon Nanomaterials by Density Functional Theory Computations and Linear Free Energy Relationship Modeling. Environmental Science & Technology, 2017, 51, 11820-11828.	10.0	38
179	Frustrated Lewis pairs photocatalyst for visible light-driven reduction of CO to multi-carbon chemicals. Nanoscale, 2019, 11, 20777-20784.	5.6	38
180	Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation. Nano Energy, 2020, 78, 105283.	16.0	38

#	Article	IF	CITATIONS
181	Tuning spectral properties of fullerenes by substitutional doping. Physical Review B, 2004, 69, .	3.2	37
182	An Effective Approach to Achieve a Spin Gapless Semiconductor–Halfâ€Metal–Metal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via <i>π</i> – <i>π</i> Interactions. Advanced Functional Materials, 2013, 23, 1507-1518.	14.9	37
183	Preserving the Edge Magnetism of Zigzag Graphene Nanoribbons by Ethylene Termination: Insight by Clar's Rule. Scientific Reports, 2013, 3, 2030.	3.3	37
184	Metallic BSi ₃ Silicene and Its One-Dimensional Derivatives: Unusual Nanomaterials with Planar Aromatic <i>D</i> _{6<i>h</i>} Six-Membered Silicon Rings. Journal of Physical Chemistry C, 2014, 118, 25825-25835.	3.1	37
185	Mechanical properties and stabilities of α-boron monolayers. Physical Chemistry Chemical Physics, 2015, 17, 2160-2168.	2.8	37
186	Insight into the Origin of Boosted Photosensitive Efficiency of Graphene from the Cooperative Experiment and Theory Study. Journal of Physical Chemistry C, 2016, 120, 27091-27103.	3.1	37
187	Rational Prediction of Single Metal Atom Supported on Two-Dimensional Metal Diborides for Electrocatalytic N ₂ Reduction Reaction with Integrated Descriptor. Journal of Physical Chemistry Letters, 2020, 11, 5241-5247.	4.6	37
188	Homobenzene: Homoaromaticity and Homoantiaromaticity in Cycloheptatrienes. Journal of Physical Chemistry A, 2008, 112, 10586-10594.	2.5	36
189	Homoconjugation/Homoaromaticity in Main Group Inorganic Molecules. Journal of the American Chemical Society, 2009, 131, 9789-9799.	13.7	36
190	Band Gap Engineering of BN Sheets by Interlayer Dihydrogen Bonding and Electric Field Control. ChemPhysChem, 2013, 14, 1787-1792.	2.1	36
191	Aromatic stabilization in heterofullerenes C48X12(X = N, P, B, Si). Journal of Physical Organic Chemistry, 2003, 16, 726-730.	1.9	35
192	The Effect of Gas Adsorption on Carbon Nanotubes Properties. Journal of Computational and Theoretical Nanoscience, 2006, 3, 664-669.	0.4	35
193	NC unit trapped by fullerenes: a density functional theory study on Sc3NC@C2n (2n = 68, 78 and 80). Physical Chemistry Chemical Physics, 2010, 12, 12442.	2.8	35
194	Open-Shell Singlet Character of Stable Derivatives of Nonacene, Hexacene and Teranthene. Organic Letters, 2011, 13, 3316-3319.	4.6	35
195	Semi-empirical calculations on the BN substituted fullerenes C60â^'2x(BN)x (x=1–3) — isoelectronic equivalents of C60. Computational and Theoretical Chemistry, 1999, 466, 127-135.	1.5	34
196	Reduced Li diffusion barriers in composite BC3 nanotubes. Chemical Physics Letters, 2005, 415, 323-326.	2.6	34
197	Hole-Mediated Hydrogen Spillover Mechanism in Metal-Organic Frameworks. Physical Review Letters, 2010, 104, 236101.	7.8	34
198	Constructing two-dimensional holey graphyne with unusual annulative π-extension. Matter, 2022, 5, 2306-2318.	10.0	34

#	Article	IF	CITATIONS
199	Versatile Electronic and Magnetic Properties of Corrugated V ₂ O ₅ Two-Dimensional Crystal and Its Derived One-Dimensional Nanoribbons: A Computational Exploration. Journal of Physical Chemistry C, 2011, 115, 11983-11990.	3.1	33
200	N-heterocyclic carbene as a promising metal-free electrocatalyst with high efficiency for nitrogen reduction to ammonia. Journal of Energy Chemistry, 2020, 46, 78-86.	12.9	33
201	Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale, 2012, 4, 1123-1129.	5.6	32
202	Theoretical design of MoO ₃ -based high-rate lithium ion battery electrodes: the effect of dimensionality reduction. Journal of Materials Chemistry A, 2014, 2, 19180-19188.	10.3	32
203	A Density Functional Theory Study of the Mechanical Properties of Graphane With van der Waals Corrections. Mechanics of Advanced Materials and Structures, 2015, 22, 717-721.	2.6	32
204	Relative Efficacy of Coâ^'X ₄ Embedded Graphene (X=N, S, B, and P) Electrocatalysts towards Hydrogen Evolution Reaction: Is Nitrogen Really the Best Choice?. ChemCatChem, 2020, 12, 536-543.	3.7	32
205	A Metallocene-Complexed Dibismuthene: Cp2Zr(BiR)2(Cp = C5H5; R = C6H3-2,6-Mes2). Journal of the American Chemical Society, 2005, 127, 7672-7673.	13.7	31
206	Achieving Ferromagnetism in Single-Crystalline ZnS Wurtzite Nanowires via Chromium Doping. Journal of Physical Chemistry C, 2010, 114, 12099-12103.	3.1	31
207	Enhanced lithium adsorption/diffusion and improved Li capacity on SnS ₂ nanoribbons: A computational investigation. Journal of Materials Research, 2016, 31, 878-885.	2.6	31
208	Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles. , 2022, 1, 100031.		31
209	Theoretical studies on the substituted fullerene C60â^'xâ^'yBxNy(x+y=2). Computational and Theoretical Chemistry, 1998, 452, 219-225.	1.5	30
210	Surface Engineering of Graphene-Enzyme Nanocomposites for Miniaturized Biofuel Cell. IEEE Nanotechnology Magazine, 2011, 10, 59-62.	2.0	30
211	Theoretical Insights into the Structures of Graphene Oxide and Its Chemical Conversions Between Graphene. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2406-2422.	0.4	30
212	Electronic and Magnetic Properties of Hybrid Graphene Nanoribbons with Zigzag-Armchair Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 208-213.	3.1	30
213	Enhancing Ferromagnetism and Tuning Electronic Properties of Crl ₃ Monolayers by Adsorption of Transition-Metal Atoms. ACS Applied Materials & Interfaces, 2021, 13, 21593-21601.	8.0	30
214	Endohedral Metalloborofullerenes La2@B80 and Sc3N@B80: A Density Functional Theory Prediction. Journal of Physical Chemistry A, 2009, 113, 11613-11618.	2.5	29
215	Many M©Bn boron wheels are local, but not global minima. Physical Chemistry Chemical Physics, 2012, 14, 14898.	2.8	29
216	A Cr ₂ CO ₂ monolayer as a promising cathode for lithium and non-lithium ion batteries: a computational exploration_RSC Advances_2016_6_81591-81596	3.6	29

Porous hexagonal boron oxide monolayer with robust wide band gap: A computational study. FlatChem, 2018, 9, 27-32.	5.6	29
Computational studies on hydrogen storage in aluminum nitride nanowires/tubes. Nanotechnology, 2009, 20, 215701.	2.6	28
Single-Layer [Cu ₂ Br(IN) ₂] _{<i>n</i>} Coordination Polymer (CP): Electronic and Magnetic Properties, and Implication for Molecular Sensors. Journal of Physical Chemistry C, 2012, 116, 4119-4125.	3.1	27
1T phase as an efficient hole injection layer to TMDs transistors: a universal approach to achieve p-type contacts. 2D Materials, 2018, 5, 031012.	4.4	27
Theoretical Studies on the Substitution Patterns in Heterofullerenes C70-xNxand C70-xBx(x= 2â^10). Journal of Physical Chemistry A, 2001, 105, 8105-8110.	2.5	26
Synthesis, characterization and electronic properties of an endohedral plumbaspherene [Au@Pb ₁₂] ^{3â^'} . Inorganic Chemistry Frontiers, 2017, 4, 1393-1396.	6.0	26
Identifying the Ground-State NP Sheet through a Global Structure Search in Two-Dimensional Space and Its Promising High-Efficiency Photovoltaic Properties. , 2019, 1, 375-382.		26
Enhanced performance of Mo ₂ P monolayer as lithium-ion battery anode materials by carbon and nitrogen doping: a first principles study. Physical Chemistry Chemical Physics, 2021, 23, 4030-4038.	2.8	26
MX Anti-MXenes from Non-van der Waals Bulks for Electrochemical Applications: The Merit of Metallicity and Active Basal Plane. ACS Nano, 2021, 15, 6233-6242.	14.6	26
Fullerene Anions of Different Sizes and Shapes:Â A13C NMR and Density-Functional Study. Journal of Organic Chemistry, 2003, 68, 4850-4854.	3.2	25
Ccsub>71c/sub>Hcsub>2c/sub> Isomer	13.8 nate	25
A bifunctional strategy towards experimentally (synthetically) attainable molecules with planar tetracoordinate carbons. Physical Chemistry Chemical Physics, 2010, 12, 58-61.	2.8	25
Theoretical Design of Novel Trinuclear Sandwich Complexes with Central M ₃ Triangles (M = Ni, Pd, Pt). Journal of Physical Chemistry A, 2011, 115, 2402-2408.	2.5	25
Reducing Band Gap and Enhancing Carrier Mobility of Boron Nitride Nanoribbons by Conjugated π Edge States. Journal of Physical Chemistry C, 2014, 118, 25051-25056.	3.1	25
Mechanical degradation of graphene by epoxidation: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 19484-19490.	2.8	25
Oxa- and thia-fullerenes (C59O, C59S): Closed or opened cages?. Physical Chemistry Chemical Physics, 2002, 4, 4916-4920.	2.8	24
Dichlorocarbene Addition to C ₆₀ from the Trichloromethyl Anion: Carbene Mechanism or Bingel Mechanism?. Journal of Physical Chemistry A, 2009, 113, 3673-3676.	2.5	24
	 FlatChem, 2018, 9, 27-32. Computational studies on hydrogen storage in aluminum nitride nanowires/tubes. Nanotechnology, 2009, 20, 215701. Singletayer [Cursub 224/sub Br(IN) (sub 22(sub 32(sub 3	FlatChem, 2018, 9, 27-32. 0.0 0.0 Computational studies on hydrogen storage in aluminum nitride nanowires/tubes. Nanotechnology, 20, 215701. 2.6 Single-Layer [Corsub-2 / sub-9f(II)/sub-2 / sub-3 (sub-3 (sub-3 / sub-3 / sub

Structures and magnetic properties of mono-doped fullerenes C59X n and C59X($6\hat{a}$ 'n) \hat{a} ' (X=B \hat{a} ', N+, P+,) Tj ETQq0.0 0 rgBT /Overlock

#	Article	IF	CITATIONS
235	A Theoretical and Structural Investigation of Thiocarbon Anions. Journal of Organic Chemistry, 2003, 68, 8808-8814.	3.2	23
236	Combined experimental and theoretical study of small aluminum oxygen clusters. European Physical Journal D, 2007, 45, 301-308.	1.3	23
237	Self-Modulated Band Structure Engineering in C ₄ F Nanosheets: First-Principles Insights. Journal of Chemical Theory and Computation, 2014, 10, 1265-1271.	5.3	23
238	Design of Three-shell Icosahedral Matryoshka Clusters A@B12@A20 (A = Sn, Pb; B = Mg, Zn, Cd, Mn). Scientific Reports, 2014, 4, 6915.	3.3	23
239	Fullerenes C36n (n=0,2+,2â^') and their B- and N-doped analogues. Chemical Physics Letters, 2000, 329, 47-51.	2.6	22
240	Exploring adsorption of neutral aromatic pollutants onto graphene nanomaterials <i>via</i> molecular dynamics simulations and theoretical linear solvation energy relationships. Environmental Science: Nano, 2018, 5, 2117-2128.	4.3	22
241	A novel 2D porous C ₃ N ₂ framework as a promising anode material with ultra-high specific capacity for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 6551-6559.	10.3	22
242	Density functional theory studies of inorganic metallocene multidecker Vn(P6)n+1â€^(n=1–4) sandwich clusters. Journal of Chemical Physics, 2008, 128, 104706.	3.0	21
243	Interactions between Al12X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: implications for nanotoxicity. Journal of Molecular Modeling, 2012, 18, 559-568.	1.8	21
244	"Benzation―of graphene upon addition of monovalent chemical species. Physical Chemistry Chemical Physics, 2013, 15, 6842.	2.8	21
245	Photophysical and photochemical insights into the photodegradation of sulfapyridine in water: A joint experimental and theoretical study. Chemosphere, 2018, 191, 1021-1027.	8.2	21
246	Spindle nodal chain in three-dimensional α′ boron. Physical Chemistry Chemical Physics, 2018, 20, 23500-23506.	2.8	21
247	Semiconducting SN ₂ monolayer with three-dimensional auxetic properties: a global minimum with tetracoordinated sulfurs. Nanoscale, 2020, 12, 85-92.	5.6	21
248	Underlying mechanisms of reactive oxygen species and oxidative stress photoinduced by graphene and its surface-functionalized derivatives. Environmental Science: Nano, 2020, 7, 782-792.	4.3	21
249	Theoretical studies on the BN substituted fullerenes C70â~2x(BN)x (x=1–3)—isoelectronic equivalents of C70. Computational and Theoretical Chemistry, 1999, 490, 61-68.	1.5	20
250	ISOLOBAL BORON CARBONYL CARBOCATION ANALOGS. Journal of Theoretical and Computational Chemistry, 2005, 04, 669-688.	1.8	20
251	From Vanadium Naphthalene (V _{<i>n</i>–1} Np _{<i>n</i>}) Sandwich Clusters to VNp Sandwich Nanowire: Structural, Energetic, Electronic, and Magnetic Properties. Journal of Physical Chemistry A, 2012, 116, 1648-1654.	2.5	20
252	Improved stability of water clusters (H2O)30–48: a Monte Carlo search coupled with DFT computations. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	20

13

#	Article	IF	CITATIONS
253	Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets. Scientific Reports, 2016, 6, 26084.	3.3	19
254	Theoretical studies of heterofullerenes C68X2 (X = N, B). Canadian Journal of Chemistry, 1999, 77, 291-298.	1.1	18
255	Study on the optical and magnetic properties of C48N12azafullerene isomers. Physical Chemistry Chemical Physics, 2004, 6, 4566-4570.	2.8	18
256	Aromatic Boron Wheels with More than One Carbon Atom in the Center: C 2 B 8 , C 3 B 9 3+ , and C 5 B 11 +. Angewandte Chemie, 2005, 117, 1102-1106.	2.0	18
257	Electron Attachment to the Hydrogenated Watsonâ~ Crick Guanine Cytosine Base Pair (GC+H): Conventional and Proton-Transferred Structures. Journal of Physical Chemistry A, 2008, 112, 6217-6226.	2.5	18
258	Doubleâ€sided surface functionalization: An effective approach to stabilize and modulate the electronic structure of grapheneâ€like borophene. InformaÄnÃ-Materiály, 2021, 3, 327-336.	17.3	18
259	Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: A DFT investigation. Applied Surface Science, 2022, 592, 153233.	6.1	18
260	Synthesis, Properties, and Bishomoaromaticity of the First Tetrahalogenated Derivative of a 1, 5-Diphosphadithiatetrazocine: A Combined Experimental and Computational Investigation. Inorganic Chemistry, 2010, 49, 3810-3815.	4.0	16
261	A hidden symmetry-broken phase of MoS ₂ revealed as a superior photovoltaic material. Journal of Materials Chemistry A, 2018, 6, 16087-16093.	10.3	16
262	In Situ Observation of Nonâ€Classical 2â€Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angewandte Chemie - International Edition, 2021, 60, 4581-4587.	13.8	16
263	Single-atom catalysts with anionic metal centers: Promising electrocatalysts for the oxygen reduction reaction and beyond. Journal of Energy Chemistry, 2021, 63, 285-293.	12.9	15
264	What Is the Preferred Structure of the Meisenheimerâ^'Wheland Complex Between <i>sym</i> -Triaminobenzene and 4,6-Dinitrobenzofuroxan?. Journal of Organic Chemistry, 2010, 75, 3761-3765.	3.2	14
265	Porous silaphosphorene, silaarsenene and silaantimonene: a sweet marriage of Si and P/As/Sb. Journal of Materials Chemistry A, 2018, 6, 3738-3746.	10.3	14
266	Machine-learning-assisted screening of pure-silica zeolites for effective removal of linear siloxanes and derivatives. Journal of Materials Chemistry A, 2020, 8, 3228-3237.	10.3	14
267	First total synthesis of the (±)-2-methoxy-6-heptadecynoic acid and related 2-methoxylated analogs as effective inhibitors of the Leishmania topoisomerase IB enzyme. Pure and Applied Chemistry, 2012, 84, 1867-1875.	1.9	13
268	With the same Clar formulas, do the two-dimensional sandwich nanostructures X–Cr–X (X = C4H,) Tj ETQqC	0.0 rgBT	Oygrlock 10
269	Guidelines for rational design of high-performance absorbents: A case study of zeolite adsorbents for emerging pollutants in water. Green Energy and Environment, 2017, 2, 363-369.	8.7	13

Predicting the adsorption of organic pollutants on boron nitride nanosheets <i>via in silico</i>
 techniques: DFT computations and QSAR modeling. Environmental Science: Nano, 2021, 8, 795-805.

7

#	Article	IF	CITATIONS
271	The Smaller Fullerene C50, Isolated as C50Cl10. Angewandte Chemie - International Edition, 2004, 43, 4690-1.	13.8	12
272	Computational investigation on MB n (M = Li-Cs, Be-Ba, Sc-La and Ti; n = 28 and 38). Journal of Modeling, 2016, 22, 184.	Molecular 1.9	12
273	A non-innocent salen naphthalene ligand and its Co 2+ , Ni 2+ and Cu 2+ metal complexes: Structural, electrochemical, and spectroscopic characterization and computational studies. Inorganica Chimica Acta, 2018, 474, 118-127.	2.4	12
274	To Be or Not To Be Protonated: <i>cyclo</i> -N ₅ [–] in Crystal and Solvent. Journal of Physical Chemistry Letters, 2018, 9, 7137-7145.	4.6	12
275	Atomically Dispersed Uranium Enables an Unprecedentedly High NH ₃ Yield Rate. Nano Letters, 2022, 22, 4475-4481.	9.1	12
276	Particle Swarm Predictions of a SrB ₈ Monolayer with 12-Fold Metal Coordination. Journal of the American Chemical Society, 2022, 144, 11120-11128.	13.7	12
277	Spherical Homoaromaticity. Angewandte Chemie, 2002, 114, 4485-4488.	2.0	11
278	Thiol-maleimide poly(ethylene glycol) crosslinking of L-asparaginase subunits at recombinant cysteine residues introduced by mutagenesis. PLoS ONE, 2018, 13, e0197643.	2.5	11
279	Aromaticity Indices from Magnetic Shieldings. , 2004, , 395-407.		10
280	Diels–Alder reactions of graphene oxides: greatly enhanced chemical reactivity by oxygen-containing groups. Physical Chemistry Chemical Physics, 2017, 19, 11142-11151.	2.8	10
281	Structures and stabilities of C 60 (OH) 4 and C 60 (OH) 6 fullerenols. Computational and Theoretical Chemistry, 2000, 498, 227-232.	1.5	9
282	Hydrogen storage behavior of one-dimensional TiB _{<i>x</i>} chains. Nanotechnology, 2010, 21, 134006.	2.6	9
283	C ₉ N ₄ and C ₂ N ₆ S ₃ monolayers as promising anchoring materials for lithium–sulfur batteries: weakening the shuttle effect <i>via</i> optimizing lithium bonds. Physical Chemistry Chemical Physics, 2021, 23, 12958-12967.	2.8	9
284	Isomerism and aromaticity of heterofullerene C 70- n P n (n =2-10). Journal of Molecular Modeling, 2002, 8, 223-229.	1.8	8
285	Insertion of C ₅₀ into singleâ€walled carbon nanotubes: Selectivity in interwall spacing and C ₅₀ isomers. Journal of Computational Chemistry, 2008, 29, 781-787.	3.3	8
286	Scandium carbides/cyanides in the boron cage: computational prediction of X@B ₈₀ (X =) Tj ETQq0 0	0 rgBT /Ov 2.8	verlock 10 T 8
287	Recent Advances in Aromatic Antimony Clusters. Chinese Journal of Chemistry, 2018, 36, 955-960.	4.9	8

288 2D auxetic material with intrinsic ferromagnetism: a copper halide (CuCl₂) monolayer. 2.8 Physical Chemistry Chemical Physics, 2021, 23, 22078-22085. 2.8

#	Article	IF	CITATIONS
289	Tunable electronic properties and enhanced ferromagnetism in Cr ₂ Ge ₂ Te ₆ monolayer by strain engineering. Nanotechnology, 2021, 32, 485408.	2.6	7
290	SEARCHING FOR NEW MEMBERS OF C₇₀ HOMOFULLERENES BY FIRST-PRINCIPLES COMPUTATIONS: BENT'S RULE AT WORK ON C₇₀ SURFACE. Journal of Theoretical and Computational Chemistry, 2013, 12, 1250097.	1.8	6
291	Computational quest for spherical C12B68 fullerenes with "magicâ€-ï€-electrons and quasi-planar tetra-coordinated carbon. Journal of Molecular Modeling, 2014, 20, 2085.	1.8	6
292	Extraordinary Magnetoresistance in Janus Monolayer MoTeB ₂ : A Theoretical Prediction. Journal of Physical Chemistry C, 2018, 122, 28423-28430.	3.1	6
293	Modulating the electronic properties of perovskite via σ–π interfacial interactions: A computational study. APL Materials, 2018, 6, .	5.1	6
294	Spherical Aromaticity — An Overview. Developments in Fullerence Science, 2002, , 121-135.	0.5	5
295	Synthetic and structural study on some new porphyrin or metalloporphyrin macrocycle-containing model complexes for the active site of [FeFe]-hydrogenases. Journal of Organometallic Chemistry, 2014, 749, 120-128.	1.8	5
296	Polymorphism of low dimensional boron nanomaterials driven by electrostatic gating: a computational discovery. Nanoscale, 2020, 12, 10543-10549.	5.6	5
297	Comparison of Isoelectronic Heterometallic and Homometallic Binuclear Cyclopentadienylmetal Carbonyls: The Iron–Nickel vs. the Dicobalt Systems. European Journal of Inorganic Chemistry, 2008, 2008, 1219-1225.	2.0	4
298	Dynamic motion of an Lu pair inside a C ₇₆ (T _d) cage. RSC Advances, 2015, 5, 34383-34389.	3.6	4
299	The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation. Physical Chemistry Chemical Physics, 2018, 20, 24453-24464.	2.8	4
300	Novel Carbon Nanotube Peapods Encapsulating Au ₃₂ Golden Fullerene. Journal of Computational and Theoretical Nanoscience, 2006, 3, 459-462.	0.4	4
301	Anomalous Enhancement of Mechanical Properties in the Ammonia Adsorbed Defective Graphene. Scientific Reports, 2016, 6, 33810.	3.3	3
302	Two-dimensional aluminum monoxide nanosheets: A computational study. Frontiers of Physics, 2018, 13, 1.	5.0	3
303	In Situ Observation of Nonâ€Classical 2â€Norbornyl Cation in Confined Zeolites at Ambient Temperature. Angewandte Chemie, 2021, 133, 4631-4637.	2.0	2
304	Understanding the CH4 Conversion over Metal Dimers from First Principles. Nanomaterials, 2022, 12, 1518.	4.1	2
305	Theoretical studies of heterofullerenes C ₆₈ X ₂ (X = N, B). Canadian Journal of Chemistry, 1999, 77, 291-298.	1.1	2
306	Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. ChemInform, 2006, 37, no.	0.0	1

#	Article	IF	CITATIONS
307	Graphene Nanoribbons: An Effective Approach to Achieve a Spin Gapless Semiconductor–Halfâ€Metal–Metal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via <i>π</i> 〓 <i>π</i> Interactions (Adv. Funct. Mater. 12/2013). Advanced Functional Materials, 2013, 23, 1478-1478.	14.9	1
308	Nanotubes: Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes (Adv. Funct.) Tj ETQqC	0 0 rgBT 14.9	/Overlock 10
309	Fullerene Anions of Different Sizes and Shapes: A13C NMR and Density-Functional Study ChemInform, 2003, 34, no.	0.0	0
310	Do All-Metal Antiaromatic Clusters Exist?. ChemInform, 2004, 35, no.	0.0	0
311	Spherical Sila- and Germa-Homoaromaticity. ChemInform, 2004, 35, no.	0.0	0
312	Structure and Bonding in the Omnicapped Truncated Tetrahedral Au20 Cluster: Analogies Between Gold and Carbon Cluster Chemistry ChemInform, 2004, 35, no.	0.0	0
313	Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structures. ChemInform, 2006, 37, no.	0.0	0
314	Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<c60) 2006,="" 37,="" and="" carbon="" cheminform,="" nanotubes.="" no.<="" single-walled="" td=""><td>0.0</td><td>0</td></c60)>	0.0	0
315	<i>A Special Issue on</i> Structures, Properties, and Applications of Nanomaterials: A Computational Exploration. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2395-2397.	0.4	0
316	UNIFORM BENDING EFFECT ON ELECTRONIC PROPERTIES OF BORON NITRIDE NANORIBBONS: A COMPUTATIONAL INVESTIGATION. Nano LIFE, 2012, 02, 1240005.	0.9	0
317	Zeolite-templated carbons as effective sorbents to remove methylsiloxanes and derivatives: A computational screening. Green Energy and Environment, 2020, , .	8.7	0
318	Rücktitelbild: In Situ Observation of Non lassical 2â€Norbornyl Cation in Confined Zeolites at Ambient Temperature (Angew. Chem. 9/2021). Angewandte Chemie, 2021, 133, 5004-5004.	2.0	0
319	Improved stability of water clusters (H2O)30–48: a Monte Carlo search coupled with DFT computations. Highlights in Theoretical Chemistry, 2012, , 75-81.	0.0	0
320	Hexagonal honeycomb silicon: Silicene. Series in Materials Science and Engineering, 2017, , 171-188.	0.1	0
321	Computational Quest for High-Performance Electrocatalysts for Nitrogen Fixation. ECS Meeting Abstracts, 2019, , .	0.0	0
322	Computational Screening of Single-Atom Electrocatalysts for Oxygen Reduction Reaction By Machine Learning Algorithm. ECS Meeting Abstracts, 2019, , .	0.0	0
323	Towards High-Performancepgm-Free ORR Electrocatalysts: Interplay between Theory and Experiment. ECS Meeting Abstracts, 2019, , .	0.0	0
324	Optical Absorption Spectra of Coinage Metals (Cu, Ag, Au) Nanorods: A Theoretical Study. Journal of Computational and Theoretical Nanoscience, 2008, 5, 1255-1262.	0.4	0