
Martin M Matzuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 1996, 383, 531-535.	13.7	1,417
2	Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nature Genetics, 1997, 15, 201-204.	9.4	1,209
3	Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 2000, 25, 284-288.	9.4	999
4	α-Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature, 1992, 360, 313-319.	13.7	905
5	Continuous Fatty Acid Oxidation and Reduced Fat Storage in Mice Lacking Acetyl-CoA Carboxylase 2. Science, 2001, 291, 2613-2616.	6.0	801
6	The biology of infertility: research advances and clinical challenges. Nature Medicine, 2008, 14, 1197-1213.	15.2	797
7	Intercellular Communication in the Mammalian Ovary: Oocytes Carry the Conversation. Science, 2002, 296, 2178-2180.	6.0	790
8	Synergistic Roles of Bone Morphogenetic Protein 15 and Growth Differentiation Factor 9 in Ovarian Function. Molecular Endocrinology, 2001, 15, 854-866.	3.7	688
9	Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proceedings of the United States of America, 2005, 102, 16096-16101.	3.3	679
10	Math1 is essential for genesis of cerebellar granule neurons. Nature, 1997, 390, 169-172.	13.7	636
11	Anti-MuÌ^llerian Hormone Attenuates the Effects of FSH on Follicle Development in the Mouse Ovary. Endocrinology, 2001, 142, 4891-4899.	1.4	616
12	Different phenotypes for mice deficient in either activins or activin receptor type II. Nature, 1995, 374, 356-360.	13.7	553
13	Functional analysis of activins during mammalian development. Nature, 1995, 374, 354-356.	13.7	551
14	Paracrine Actions Of Growth Differentiation Factor-9 in the Mammalian Ovary. Molecular Endocrinology, 1999, 13, 1035-1048.	3.7	551
15	Multiple defects and perinatal death in mice deficient in follistatin. Nature, 1995, 374, 360-363.	13.7	545
16	NOBOX Deficiency Disrupts Early Folliculogenesis and Oocyte-Specific Gene Expression. Science, 2004, 305, 1157-1159.	6.0	458
17	Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18117-18122.	3.3	447
18	The Bone Morphogenetic Protein 15 Gene Is X-Linked and Expressed in Oocytes. Molecular Endocrinology, 1998, 12, 1809-1817.	3.7	414

#	Article	IF	CITATIONS
19	Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature, 1998, 391, 489-492.	13.7	410
20	Molecular Characterization of the Follicle Defects in the Growth Differentiation Factor 9-Deficient Ovary. Molecular Endocrinology, 1999, 13, 1018-1034.	3.7	391
21	Genetic dissection of mammalian fertility pathways. Nature Cell Biology, 2002, 4, S33-S40.	4.6	387
22	Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nature Genetics, 2003, 33, 187-191.	9.4	385
23	Disruption of Gastrulation and Heparan Sulfate Biosynthesis in EXT1-Deficient Mice. Developmental Biology, 2000, 224, 299-311.	0.9	370
24	Cyclin A1 is required for meiosis in the male mouse. Nature Genetics, 1998, 20, 377-380.	9.4	355
25	Small-Molecule Inhibition of BRDT for Male Contraception. Cell, 2012, 150, 673-684.	13.5	353
26	Knockout of Pentraxin 3, a Downstream Target of Growth Differentiation Factor-9, Causes Female Subfertility. Molecular Endocrinology, 2002, 16, 1154-1167.	3.7	345
27	Roles of NPM2 in Chromatin and Nucleolar Organization in Oocytes and Embryos. Science, 2003, 300, 633-636.	6.0	330
28	High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3921-3926.	3.3	327
29	Infant Vocalization, Adult Aggression, and Fear Behavior of an Oxytocin Null Mutant Mouse. Hormones and Behavior, 2000, 37, 145-155.	1.0	322
30	Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte–cumulus cell complex in mice: genetic evidence for an oocyte–granulosa cell regulatory loop. Developmental Biology, 2004, 276, 64-73.	0.9	310
31	Characterization of Oocyte and Follicle Development in Growth Differentiation Factor-9-Deficient Mice. Developmental Biology, 1998, 204, 373-384.	0.9	293
32	Targeted disruption of luteinizing hormone Â-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17294-17299.	3.3	284
33	Oocyte-expressed TGF-Î ² superfamily members in female fertility. Molecular and Cellular Endocrinology, 2000, 159, 1-5.	1.6	257
34	Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E776-85.	3.3	251
35	Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8090-8095.	3.3	248
36	Deletion of Dicer in Somatic Cells of the Female Reproductive Tract Causes Sterility. Molecular Endocrinology, 2008, 22, 2336-2352.	3.7	238

#	Article	IF	CITATIONS
37	Molecular Profiling Uncovers a p53-Associated Role for MicroRNA-31 in Inhibiting the Proliferation of Serous Ovarian Carcinomas and Other Cancers. Cancer Research, 2010, 70, 1906-1915.	0.4	238
38	TEX14 is essential for intercellular bridges and fertility in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4982-4987.	3.3	237
39	Regulation of Muscle Mass by Follistatin and Activins. Molecular Endocrinology, 2010, 24, 1998-2008.	3.7	234
40	A Link between mir-100 and FRAP1/mTOR in Clear Cell Ovarian Cancer. Molecular Endocrinology, 2010, 24, 447-463.	3.7	225
41	MLL2 Is Required in Oocytes for Bulk Histone 3 Lysine 4 Trimethylation and Transcriptional Silencing. PLoS Biology, 2010, 8, e1000453.	2.6	220
42	Functional MicroRNA Involved in Endometriosis. Molecular Endocrinology, 2011, 25, 821-832.	3.7	220
43	Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12011-12016.	3.3	219
44	Insulin-Like Growth Factor I Regulates Gonadotropin Responsiveness in the Murine Ovary. Molecular Endocrinology, 1997, 11, 1924-1933.	3.7	217
45	GDF11 Controls the Timing of Progenitor Cell Competence in Developing Retina. Science, 2005, 308, 1927-1930.	6.0	208
46	Fatty acid synthesis is essential in embryonic development: Fatty acid synthase null mutants and most of the heterozygotes die in utero. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6358-6363.	3.3	204
47	Mice Lacking Ataxin-1 Display Learning Deficits and Decreased Hippocampal Paired-Pulse Facilitation. Journal of Neuroscience, 1998, 18, 5508-5516.	1.7	197
48	Loss of Zona Pellucida Binding Proteins in the Acrosomal Matrix Disrupts Acrosome Biogenesis and Sperm Morphogenesis. Molecular and Cellular Biology, 2007, 27, 6794-6805.	1.1	196
49	Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Developmental Biology, 2004, 275, 447-458.	0.9	194
50	Germ Cell Intercellular Bridges. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005850-a005850.	2.3	192
51	Smad5 is required for mouse primordial germ cell development. Mechanisms of Development, 2001, 104, 61-67.	1.7	191
52	Granulosa Cell-Specific Inactivation of Follistatin Causes Female Fertility Defects. Molecular Endocrinology, 2004, 18, 953-967.	3.7	191
53	Overexpression of Mouse Follistatin Causes Reproductive Defects in Transgenic Mice. Molecular Endocrinology, 1998, 12, 96-106.	3.7	190
54	Conditional Deletion of <i>Smad1</i> and <i>Smad5</i> in Somatic Cells of Male and Female Gonads Leads to Metastatic Tumor Development in Mice. Molecular and Cellular Biology, 2008, 28, 248-257.	1.1	189

#	Article	IF	CITATIONS
55	Insertion of Inhbb into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions. Nature Genetics, 2000, 25, 453-457.	9.4	185
56	Follistatin Regulates Enamel Patterning in Mouse Incisors by Asymmetrically Inhibiting BMP Signaling and Ameloblast Differentiation. Developmental Cell, 2004, 7, 719-730.	3.1	179
57	Transgenic Models to Study Gonadotropin Function: The Role of Follicle-Stimulating Hormone in Gonadal Growth and Tumorigenesis. Molecular Endocrinology, 1999, 13, 851-865.	3.7	169
58	Redundant Roles of SMAD2 and SMAD3 in Ovarian Granulosa Cells In Vivo. Molecular and Cellular Biology, 2008, 28, 7001-7011.	1.1	163
59	Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3723-9.	3.3	163
60	HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10546-10551.	3.3	161
61	Premature Luteinization and Cumulus Cell Defects in Ovarian-SpecificSmad4Knockout Mice. Molecular Endocrinology, 2006, 20, 1406-1422.	3.7	159
62	Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nature Communications, 2015, 6, 6934.	5.8	157
63	Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2353-60.	3.3	156
64	GASZ Is Essential for Male Meiosis and Suppression of Retrotransposon Expression in the Male Germline. PLoS Genetics, 2009, 5, e1000635.	1.5	151
65	Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5755-5760.	3.3	144
66	Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mechanisms of Development, 2002, 111, 137-141.	1.7	143
67	A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. Rna, 2008, 14, 2290-2296.	1.6	141
68	Smad5 Is Essential for Left–Right Asymmetry in Mice. Developmental Biology, 2000, 219, 71-78.	0.9	138
69	Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7704-7710.	3.3	134
70	Activin βC and βE Genes Are Not Essential for Mouse Liver Growth, Differentiation, and Regeneration. Molecular and Cellular Biology, 2000, 20, 6127-6137.	1.1	122
71	Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10mutations in oligozoospermic patients impair homodimerization. Human Molecular Genetics, 2006, 15, 3411-3419.	1.4	122
72	Biochemical Interactions of the Neuronal Pentraxins. Journal of Biological Chemistry, 2000, 275, 17786-17792.	1.6	121

#	Article	IF	CITATIONS
73	Follicle-Stimulating Hormone Increases Testicular Anti-MuÌ́llerian Hormone (AMH) Production through Sertoli Cell Proliferation and a Nonclassical Cyclic Adenosine 5′-Monophosphate-Mediated Activation of the AMH Gene. Molecular Endocrinology, 2003, 17, 550-561.	3.7	120
74	Intraovarian Activins Are Required for Female Fertility. Molecular Endocrinology, 2007, 21, 2458-2471.	3.7	120
75	Revelations of ovarian follicle biology from gene knockout mice. Molecular and Cellular Endocrinology, 2000, 163, 61-66.	1.6	117
76	Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7793-7798.	3.3	116
77	Activation of Neuronal Gene Expression by the JMJD3 Demethylase Is Required for Postnatal and Adult Brain Neurogenesis. Cell Reports, 2014, 8, 1290-1299.	2.9	116
78	<i>The Menstrual Cycle</i> . Annals of the New York Academy of Sciences, 2008, 1135, 10-18.	1.8	114
79	Conversion of midbodies into germ cell intercellular bridges. Developmental Biology, 2007, 305, 389-396.	0.9	112
80	Sperm proteins SOF1, TMEM95, and SPACA6 are required for spermâ^'oocyte fusion in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11493-11502.	3.3	111
81	Mouse Oocytes Enable LH-Induced Maturation of the Cumulus-Oocyte Complex via Promoting EGF Receptor-Dependent Signaling. Molecular Endocrinology, 2010, 24, 1230-1239.	3.7	109
82	BMPR2 is required for postimplantation uterine function and pregnancy maintenance. Journal of Clinical Investigation, 2013, 123, 2539-2550.	3.9	107
83	Growth Differentiation Factor 9 Regulates Expression of the Bone Morphogenetic Protein Antagonist Gremlin. Journal of Biological Chemistry, 2004, 279, 32281-32286.	1.6	106
84	A Mutation in the Inner Mitochondrial Membrane Peptidase 2-Like Gene (Immp2l) Affects Mitochondrial Function and Impairs Fertility in Mice1. Biology of Reproduction, 2008, 78, 601-610.	1.2	102
85	The Testis-Enriched Histone Demethylase, KDM4D, Regulates Methylation of Histone H3 Lysine 9 During Spermatogenesis in the Mouse but Is Dispensable for Fertility1. Biology of Reproduction, 2011, 84, 1225-1234.	1.2	101
86	Absence of tektin 4 causes asthenozoospermia and subfertility in male mice. FASEB Journal, 2007, 21, 1013-1025.	0.2	100
87	Preservation of hypothalamic dopaminergic neurons in Parkinson's disease. Annals of Neurology, 1985, 18, 552-555.	2.8	98
88	Granulosa Cell-Expressed BMPR1A and BMPR1B Have Unique Functions in Regulating Fertility but Act Redundantly to Suppress Ovarian Tumor Development. Molecular Endocrinology, 2010, 24, 1251-1266.	3.7	97
89	The Long Pentraxin PTX3 Is Crucial for Tissue Inflammation after Intestinal Ischemia and Reperfusion in Mice. American Journal of Pathology, 2009, 174, 1309-1318.	1.9	96
90	The Art and Artifact of GDF9 Activity: Cumulus Expansion and the Cumulus Expansion-Enabling Factor1. Biology of Reproduction, 2005, 73, 582-585.	1.2	95

#	Article	IF	CITATIONS
91	Transforming Growth Factor β Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function. PLoS Genetics, 2011, 7, e1002320.	1.5	94
92	Knockout of Pentraxin 3, a Downstream Target of Growth Differentiation Factor-9, Causes Female Subfertility. , 0, .		92
93	Analysis of MicroRNA Expression in the Prepubertal Testis. PLoS ONE, 2010, 5, e15317.	1.1	91
94	Analysis of Ovarian Gene Expression in Follicle-Stimulating Hormone Î ² Knockout Mice*. Endocrinology, 2001, 142, 2742-2751.	1.4	90
95	Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Molecular Human Reproduction, 2008, 14, 673-678.	1.3	90
96	Estrogen Promotes the Development of Mouse Cumulus Cells in Coordination with Oocyte-Derived GDF9 and BMP15. Molecular Endocrinology, 2010, 24, 2303-2314.	3.7	90
97	Gene Targeting Approaches to Neuroendocrinology: Oxytocin, Maternal Behavior, and Affiliation. Hormones and Behavior, 1997, 31, 221-231.	1.0	89
98	Mouse TEX14 Is Required for Embryonic Germ Cell Intercellular Bridges but Not Female Fertility1. Biology of Reproduction, 2009, 80, 449-457.	1.2	89
99	Discovery of Novel MicroRNAs in Female Reproductive Tract Using Next Generation Sequencing. PLoS ONE, 2010, 5, e9637.	1.1	88
100	Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Research, 2008, 18, 1571-1581.	2.4	87
101	Worldwide frequency of a common genetic variant of luteinizing hormone: an international collaborative research. Fertility and Sterility, 1997, 67, 998-1004.	0.5	85
102	Reproductive Defects in γ-Glutamyl Transpeptidase-Deficient Mice ¹ . Endocrinology, 2000, 141, 4270-4277.	1.4	85
103	Connective Tissue Growth Factor Is Required for Normal Follicle Development and Ovulation. Molecular Endocrinology, 2011, 25, 1740-1759.	3.7	85
104	Overexpression of Human Chorionic Gonadotropin Causes Multiple Reproductive Defects in Transgenic Mice1. Biology of Reproduction, 2003, 69, 338-346.	1.2	83
105	Activin-Like Kinase 2 Functions in Peri-implantation Uterine Signaling in Mice and Humans. PLoS Genetics, 2013, 9, e1003863.	1.5	83
106	Zygote Arrest 1 (Zar1) Is an Evolutionarily Conserved Gene Expressed in Vertebrate Ovaries1. Biology of Reproduction, 2003, 69, 861-867.	1.2	82
107	In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nature Communications, 2017, 8, 15680.	5.8	82
108	Discovery of germ cell–specific transcripts by expressed sequence tag database analysis. Fertility and Sterility, 2001, 76, 550-554.	0.5	81

#	Article	IF	CITATIONS
109	CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in miceâ€. Biology of Reproduction, 2019, 101, 501-511.	1.2	81
110	SMAD3 Regulates Gonadal Tumorigenesis. Molecular Endocrinology, 2007, 21, 2472-2486.	3.7	76
111	Loss of inhibin alpha uncouples oocyte-granulosa cell dynamics and disrupts postnatal folliculogenesis. Developmental Biology, 2009, 334, 458-467.	0.9	74
112	TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5370-E5378.	3.3	74
113	Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9393-9400.	3.3	74
114	TEX14 Interacts with CEP55 To Block Cell Abscission. Molecular and Cellular Biology, 2010, 30, 2280-2292.	1.1	73
115	Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7189-7194.	3.3	72
116	Interrelationship of Growth Differentiation Factor 9 and Inhibin in Early Folliculogenesis and Ovarian Tumorigenesis in Mice. Molecular Endocrinology, 2004, 18, 1509-1519.	3.7	72
117	Studying TGF-β superfamily signaling by knockouts and knockins. Molecular and Cellular Endocrinology, 2001, 180, 39-46.	1.6	71
118	Association of mutations in the zona pellucida binding protein 1 (ZPBP1) gene with abnormal sperm head morphology in infertile men. Molecular Human Reproduction, 2012, 18, 14-21.	1.3	70
119	RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 550-555.	3.3	69
120	Tektin 3 is required for progressive sperm motility in mice. Molecular Reproduction and Development, 2009, 76, 453-459.	1.0	69
121	The TGF-β Family in the Reproductive Tract. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022251.	2.3	69
122	Inhibin and p27 Interact to Regulate Gonadal Tumorigenesis. Molecular Endocrinology, 2001, 15, 985-996.	3.7	68
123	Obox, a Family of Homeobox Genes Preferentially Expressed in Germ Cells. Genomics, 2002, 79, 711-717.	1.3	68
124	CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Scientific Reports, 2017, 7, 16827.	1.6	68
125	Recombination site selection by Tn3 resolvase: Topological tests of a tracking mechanism. Cell, 1985, 40, 147-158.	13.5	67
126	The Asparagine-linked Oligosaccharides of the Human Chorionic Gonadotropin β Subunit Facilitate Correct Disulfide Bond Pairing. Journal of Biological Chemistry, 1995, 270, 11851-11859.	1.6	67

#	Article	IF	CITATIONS
127	Genetic models for transforming growth factor β superfamily signaling in ovarian follicle development. Molecular and Cellular Endocrinology, 2004, 225, 83-91.	1.6	67
128	MRG15 Regulates Embryonic Development and Cell Proliferation. Molecular and Cellular Biology, 2005, 25, 2924-2937.	1.1	67
129	Stimulation of Activin Receptor II Signaling Pathways Inhibits Differentiation of Multiple Gastric Epithelial Lineages. Molecular Endocrinology, 1998, 12, 181-192.	3.7	63
130	Prevention of cachexia-like syndrome development and reduction of tumor progression in inhibin-deficient mice following administration of a chimeric activin receptor type II-murine Fc protein. Molecular Human Reproduction, 2007, 13, 675-683.	1.3	63
131	Activin Bioactivity Affects Germ Cell Differentiation in the Postnatal Mouse Testis In Vivo1. Biology of Reproduction, 2010, 82, 980-990.	1.2	63
132	NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility. Science, 2020, 368, 1132-1135.	6.0	63
133	Mutagenesis and Gene Transfer Define Site-Specific Roles of the Gonadotropin Oligosaccharides. Biology of Reproduction, 1989, 40, 48-53.	1.2	61
134	As the world grows: contraception in the 21st century. Journal of Clinical Investigation, 2008, 118, 1330-1343.	3.9	61
135	Identification of an Inhibin Receptor in Gonadal Tumors from Inhibin α-Subunit Knockout Mice. Journal of Biological Chemistry, 1998, 273, 398-403.	1.6	60
136	MRG15 is required for pre-mRNA splicing and spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5408-15.	3.3	60
137	Disruption of γ-Glutamyl Leukotrienase Results in Disruption of Leukotriene D 4 Synthesis In Vivo and Attenuation of the Acute Inflammatory Response. Molecular and Cellular Biology, 2001, 21, 5389-5395.	1.1	58
138	Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5098-107.	3.3	57
139	A Mild, DNA-Compatible Nitro Reduction Using B ₂ (OH) ₄ . Organic Letters, 2019, 21, 2194-2199.	2.4	56
140	Follistatin is critical for mouse uterine receptivity and decidualization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4772-E4781.	3.3	53
141	Cyclin D2 and p27 Are Tissue-Specific Regulators of Tumorigenesis in Inhibin α Knockout Mice. Molecular Endocrinology, 2003, 17, 2053-2069.	3.7	52
142	Fibroblast Growth Factors and Epidermal Growth Factor Cooperate with Oocyte-Derived Members of the TGFbeta Superfamily to Regulate Spry2 mRNA Levels in Mouse Cumulus Cells1. Biology of Reproduction, 2009, 81, 833-841.	1.2	52
143	Deficiency of Growth Differentiation Factor 3 Protects against Diet-Induced Obesity by Selectively Acting on White Adipose. Molecular Endocrinology, 2009, 23, 113-123.	3.7	52
144	Activins Are Critical Modulators of Growth and Survival. Molecular Endocrinology, 2003, 17, 2404-2417.	3.7	51

#	Article	IF	CITATIONS
145	Uterine ALK3 is essential during the window of implantation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E387-95.	3.3	51
146	Stable expression and characterization of N-terminal tagged recombinant human bone morphogenetic protein 15. Molecular Human Reproduction, 2009, 15, 779-788.	1.3	49
147	Mendelian genetics of male infertility. Annals of the New York Academy of Sciences, 2010, 1214, E1-E17.	1.8	48
148	Identification of multiple male reproductive tract-specific proteins that regulate sperm migration through the oviduct in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18498-18506.	3.3	48
149	Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections. ACS Combinatorial Science, 2019, 21, 75-82.	3.8	48
150	BMP7 Induces Uterine Receptivity and Blastocyst Attachment. Endocrinology, 2017, 158, 979-992.	1.4	46
151	Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15505-15513.	3.3	46
152	Uterine double-conditional inactivation of <i>Smad2</i> and <i>Smad3</i> in mice causes endometrial dysregulation, infertility, and uterine cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3873-3882.	3.3	46
153	Altered excitationâ€contraction coupling with skeletal muscle specific FKBP12 deficiency. FASEB Journal, 2004, 18, 1597-1599.	0.2	45
154	Genetics of Mammalian Reproduction: Modeling the End of the Germline. Annual Review of Physiology, 2012, 74, 503-528.	5.6	42
155	Recurrent <i>BCAM-AKT2</i> fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1272-7.	3.3	42
156	Systematic Identification of Druggable Epithelial–Stromal Crosstalk Signaling Networks in Ovarian Cancer. Journal of the National Cancer Institute, 2019, 111, 272-282.	3.0	42
157	Discovery and characterization of bromodomain 2–specific inhibitors of BRDT. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
158	Functional analysis of mammalian members of the transforming growth factor-Î ² superfamily. Trends in Endocrinology and Metabolism, 1995, 6, 120-127.	3.1	41
159	Identification of Zfp393, a germ cell-specific gene encoding a novel zinc finger protein. Mechanisms of Development, 2002, 118, 233-239.	1.7	41
160	CDKN2D-WDFY2 Is a Cancer-Specific Fusion Gene Recurrent in High-Grade Serous Ovarian Carcinoma. PLoS Genetics, 2014, 10, e1004216.	1.5	41
161	Inhibitory Phosphorylation of Separase Is Essential for Genome Stability and Viability of Murine Embryonic Germ Cells. PLoS Biology, 2008, 6, e15.	2.6	40
162	Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16782-16789.	3.3	40

#	Article	IF	CITATIONS
163	H3K27 Demethylase, JMJD3, Regulates Fragmentation of Spermatogonial Cysts. PLoS ONE, 2013, 8, e72689.	1.1	40
164	Retinoblastoma Protein Plays Multiple Essential Roles in the Terminal Differentiation of Sertoli Cells. Molecular Endocrinology, 2009, 23, 1900-1913.	3.7	39
165	Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biology, 2020, 18, 103.	1.7	39
166	C–N Coupling of DNA-Conjugated (Hetero)aryl Bromides and Chlorides for DNA-Encoded Chemical Library Synthesis. Bioconjugate Chemistry, 2020, 31, 770-780.	1.8	39
167	ARMC12 regulates spatiotemporal mitochondrial dynamics during spermiogenesis and is required for male fertility. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
168	Normal Reproductive Function in InhBP/p120-Deficient Mice. Molecular and Cellular Biology, 2003, 23, 4882-4891.	1.1	38
169	Female Infertility and Disrupted Angiogenesis Are Actions of Specific Follistatin Isoforms. Molecular Endocrinology, 2008, 22, 415-429.	3.7	38
170	Recurrent <i><scp>DICER1</scp></i> hotspot mutations in endometrial tumours and their impact on <scp>microRNA</scp> biogenesis. Journal of Pathology, 2015, 237, 215-225.	2.1	38
171	Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Nature Communications, 2021, 12, 3386.	5.8	38
172	Expression of Recombinant Human Choriogonadotropin in Chinese Hamster Ovary Glycosylation Mutants. Molecular Endocrinology, 1989, 3, 2011-2017.	3.7	37
173	Pentraxin 3 deletion aggravates allergic inflammation through a T H 17-dominant phenotype and enhanced CD4 T-cell survival. Journal of Allergy and Clinical Immunology, 2017, 139, 950-963.e9.	1.5	37
174	Oosp1 encodes a novel mouse oocyte-secreted protein. Genesis, 2001, 31, 105-110.	0.8	36
175	Minireview: The Roles of Small RNA Pathways in Reproductive Medicine. Molecular Endocrinology, 2011, 25, 1257-1279.	3.7	36
176	Activin-like kinase 5 (ALK5) inactivation in the mouse uterus results in metastatic endometrial carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3883-3892.	3.3	36
177	DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 M ^{pro} inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
178	Genetic dissection of mammalian fertility pathways. Nature Medicine, 2002, 8, S40-S40.	15.2	36
179	Conditional Deletion of the Retinoblastoma (Rb) Gene in Ovarian Granulosa Cells Leads to Premature Ovarian Failure. Molecular Endocrinology, 2008, 22, 2141-2161.	3.7	35
180	GDF-9 and BMP-15: oocyte organizers. Reviews in Endocrine and Metabolic Disorders, 2002, 3, 27-32.	2.6	34

#	Article	IF	CITATIONS
181	Sequence and expression of testis-expressed gene 14 (Tex14): a gene encoding a protein kinase preferentially expressed during spermatogenesis. Gene Expression Patterns, 2003, 3, 231-236.	0.3	34
182	Mice Deficient in Oocyte-Specific Oligoadenylate Synthetase-Like Protein OAS1D Display Reduced Fertility. Molecular and Cellular Biology, 2005, 25, 4615-4624.	1.1	34
183	Preimplantation Mouse Embryos Depend on Inhibitory Phosphorylation of Separase To Prevent Chromosome Missegregation. Molecular and Cellular Biology, 2009, 29, 1498-1505.	1.1	34
184	Endothelial pentraxin 3 contributes to murine ischemic acute kidney injury. Kidney International, 2012, 82, 1195-1207.	2.6	34
185	Reproductive tract function and dysfunction in women. Nature Reviews Endocrinology, 2011, 7, 517-525.	4.3	33
186	Defective Whisker Follicles and Altered Brainstem Patterns in Activin and Follistatin Knockout Mice. Molecular and Cellular Neurosciences, 1998, 12, 206-219.	1.0	32
187	Mining the oocyte transcriptome. Trends in Endocrinology and Metabolism, 2006, 17, 136-143.	3.1	31
188	Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. Laboratory Investigation, 2009, 89, 131-141.	1.7	30
189	Homogeneous and Functional Group Tolerant Ring-Closing Metathesis for DNA-Encoded Chemical Libraries. ACS Combinatorial Science, 2020, 22, 80-88.	3.8	30
190	Characterization of Integrin Expression in the Mouse Ovary1. Biology of Reproduction, 2002, 67, 743-751.	1.2	29
191	The ret finger protein-like 4 gene, Rfpl4, encodes a putative E3 ubiquitin-protein ligase expressed in adult germ cells. Mechanisms of Development, 2002, 112, 173-177.	1.7	28
192	Functional analysis of oocyte-expressed genes using transgenic models. Molecular and Cellular Endocrinology, 2002, 187, 5-9.	1.6	28
193	Regulation of FSHÎ ² and GnRH receptor gene expression in activin receptor II knockout male mice. Molecular and Cellular Endocrinology, 2003, 212, 19-27.	1.6	28
194	Dysregulation of Uterine Signaling Pathways in Progesterone Receptor-Cre Knockout of Dicer. Molecular Endocrinology, 2012, 26, 1552-1566.	3.7	28
195	Insights Into SMAD4 Loss in Pancreatic Cancer From Inducible Restoration of TGF-Î ² Signaling. Molecular Endocrinology, 2015, 29, 1440-1453.	3.7	28
196	Whole Reproductive System Non-Negative Matrix Factorization Mass Spectrometry Imaging of an Early-Stage Ovarian Cancer Mouse Model. PLoS ONE, 2016, 11, e0154837.	1.1	28
197	CRISPR/Cas9-mediated genome-edited mice reveal 10 testis-enriched genes are dispensable for male fecundity. Biology of Reproduction, 2020, 103, 195-204.	1.2	28
198	Follistatin Is a Modulator of Gonadal Tumor Progression and the Activin-Induced Wasting Syndrome in Inhibin-Deficient Mice. , 0, .		28

#	Article	IF	CITATIONS
199	Regulation of Growth Differentiation Factor 9 Expression in Oocytes In Vivo: A Key Role of the E-Box1. Biology of Reproduction, 2006, 74, 999-1006.	1.2	27
200	The testis-specific serine proteases PRSS44, PRSS46, and PRSS54 are dispensable for male mouse fertilityâ€. Biology of Reproduction, 2020, 102, 84-91.	1.2	27
201	Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infectious Diseases, 2020, 6, 1214-1227.	1.8	27
202	Structure of the mouse activin receptor type II gene. Biochemical and Biophysical Research Communications, 1992, 185, 404-413.	1.0	26
203	Sexually Dimorphic Roles of Steroid Hormone Receptor Signaling in Gonadal Tumorigenesis. Molecular Endocrinology, 2003, 17, 2039-2052.	3.7	26
204	High-Throughput Discovery of Germ-Cell-Specific Genes. Seminars in Reproductive Medicine, 2005, 23, 201-212.	0.5	26
205	Analysis of Ovarian Gene Expression in Follicle-Stimulating Hormone \hat{I}^2 Knockout Mice. , 0, .		26
206	Uterine Activin-Like Kinase 4 Regulates Trophoblast Development During Mouse Placentation. Molecular Endocrinology, 2015, 29, 1684-1693.	3.7	25
207	Cloning of the mouse gonadotropin β-subunit-encoding genes, I. Structure of the follicle-stimulating hormone β-subunit-encoding gene. Gene, 1995, 166, 333-334.	1.0	24
208	Restricted germ cell expression of a gene encoding a novel mammalian HORMA domain-containing protein. Gene Expression Patterns, 2004, 5, 257-263.	0.3	24
209	Impaired Male Sexual Behavior in Activin Receptor Type II Knockout Mice1. Biology of Reproduction, 2005, 73, 1182-1190.	1.2	24
210	Palladium-Catalyzed Hydroxycarbonylation of (Hetero)aryl Halides for DNA-Encoded Chemical Library Synthesis. Bioconjugate Chemistry, 2019, 30, 2209-2215.	1.8	24
211	Reconstitution of the oocyte nucleolus in mice by a single nucleolar protein, NPM2. Journal of Cell Science, 2017, 130, 2416-2429.	1.2	23
212	GASZ promotes germ cell derivation from embryonic stem cells. Stem Cell Research, 2013, 11, 845-860.	0.3	22
213	Multistep Synthesis of 1,2,4-Oxadiazoles via DNA-Conjugated Aryl Nitrile Substrates. Bioconjugate Chemistry, 2019, 30, 1304-1308.	1.8	22
214	Prss55 but not Prss51 is required for male fertility in miceâ€. Biology of Reproduction, 2020, 103, 223-234.	1.2	22
215	Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers. Oncogene, 2021, 40, 2081-2095.	2.6	22
216	Genetic manipulations to study reproduction. Molecular and Cellular Endocrinology, 2005, 234, 127-135.	1.6	21

#	Article	IF	CITATIONS
217	Metabolomic Serum Profiling Detects Early-Stage High-Grade Serous Ovarian Cancer in a Mouse Model. Journal of Proteome Research, 2015, 14, 917-927.	1.8	21
218	CRISPR/Cas9-based genome editing in mice uncovers 13 testis- or epididymis-enriched genes individually dispensable for male reproductionâ€. Biology of Reproduction, 2020, 103, 183-194.	1.2	21
219	Metabolism of JQ1, an inhibitor of bromodomain and extra terminal bromodomain proteins, in human and mouse liver microsomesâ€. Biology of Reproduction, 2020, 103, 427-436.	1.2	21
220	Role of Androgens in Testicular Tumor Development in Inhibin-Deficient Mice*. Endocrinology, 1997, 138, 5000-5005.	1.4	20
221	Identification and Characterization of Evolutionarily Conserved Pufferfish, Zebrafish, and Frog Orthologs of GASZ1. Biology of Reproduction, 2004, 70, 1619-1625.	1.2	20
222	Activins and inhibins: Novel regulators of thymocyte development. Biochemical and Biophysical Research Communications, 2009, 381, 229-235.	1.0	20
223	Identification and Characterization of RBM44 as a Novel Intercellular Bridge Protein. PLoS ONE, 2011, 6, e17066.	1.1	20
224	Luteinizing hormone promotes gonadal tumorigenesis in inhibin-deficient mice. Molecular and Cellular Endocrinology, 2008, 294, 19-28.	1.6	19
225	Tmprss12 is required for sperm motility and uterotubal junction migration in miceâ€. Biology of Reproduction, 2020, 103, 254-263.	1.2	19
226	Blockage of the Rete Testis and Efferent Ductules by Ectopic Sertoli and Leydig Cells Causes Infertility in Dax1-Deficient Male Mice. , 0, .		19
227	Minireview: Genetic Models for the Study of Gonadotropin Actions. , 0, .		19
228	Gynecologic diseases get their genes. Nature Medicine, 2005, 11, 24-26.	15.2	18
229	Acrosome-specific geneAEP1: Identification, characterization and roles in spermatogenesis. Journal of Cellular Physiology, 2006, 209, 755-766.	2.0	17
230	Functional Analysis of miR-34c as a Putative Tumor Suppressor in High-Grade Serous Ovarian Cancer1. Biology of Reproduction, 2014, 91, 113.	1.2	17
231	Disrupting the male germ line to find infertility and contraception targets. Annales D'Endocrinologie, 2014, 75, 101-108.	0.6	17
232	Eggs in the balance. Nature Genetics, 2001, 28, 300-301.	9.4	16
233	Cloning of the mouse gonadotropin β-subunit-encoding genes, II. Structure of the luteinizing hormone β-subunit-encoding genes. Gene, 1995, 166, 335-336.	1.0	15
234	Genetic engineering to study testicular tumorigenesis. Apmis, 2003, 111, 174-183.	0.9	15

#	Article	IF	CITATIONS
235	Germ-line immortality. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16395-16396.	3.3	15
236	MrgX Is Not Essential for Cell Growth and Development in the Mouse. Molecular and Cellular Biology, 2005, 25, 4873-4880.	1.1	15
237	Mouse t-complex protein 11 is important for progressive motility in spermâ€. Biology of Reproduction, 2020, 102, 852-862.	1.2	15
238	Cfap97d1Âis important for flagellar axoneme maintenance and male mouse fertility. PLoS Genetics, 2020, 16, e1008954.	1.5	15
239	FAM209 associates with DPY19L2, and is required for sperm acrosome biogenesis and fertility in mice. Journal of Cell Science, 2021, 134, .	1.2	15
240	Discovery of potent BET bromodomain 1 stereoselective inhibitors using DNA-encoded chemical library selections. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
241	UBE2B mRNA alterations are associated with severe oligozoospermia in infertile men. Molecular Human Reproduction, 2013, 19, 388-394.	1.3	14
242	Dynamic cytoplasmic projections connect mammalian spermatogonia <i>in vivo</i> . Development (Cambridge), 2018, 145, .	1.2	14
243	Solution-Phase Fmoc-Based Peptide Synthesis for DNA-Encoded Chemical Libraries: Reaction Conditions, Protecting Group Strategies, and Pitfalls. ACS Combinatorial Science, 2020, 22, 833-843.	3.8	14
244	Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization. Protein and Cell, 2021, 12, 810-817.	4.8	14
245	Characterization of Spermatogonial Stem Cells Lacking Intercellular Bridges and Genetic Replacement of a Mutation in Spermatogonial Stem Cells. PLoS ONE, 2012, 7, e38914.	1.1	14
246	Epithelialization of mouse ovarian tumor cells originating in the fallopian tube stroma. Oncotarget, 2016, 7, 66077-66086.	0.8	13
247	Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defectsâ€. Biology of Reproduction, 2020, 102, 1234-1247.	1.2	12
248	Identification of KIAA1210 as a novel X-chromosome-linked protein that localizes to the acrosome and associates with the ectoplasmic specialization in testes. Biology of Reproduction, 2017, 96, 469-477.	1.2	11
249	Synthesis of 5-substituted tetrazoles <i>via</i> DNA-conjugated nitrile. Organic and Biomolecular Chemistry, 2020, 18, 9221-9226.	1.5	11
250	Knockout of serine-rich single-pass membrane protein 1 (Ssmem1) causes globozoospermia and sterility in male miceâ€. Biology of Reproduction, 2020, 103, 244-253.	1.2	11
251	LIN28 lets BLIMP1 Take the Right Course. Developmental Cell, 2009, 17, 160-161.	3.1	10
252	CRISPR/Cas9-mediated genome editing reveals 12 testis-enriched genes dispensable for male fertility in mice. Asian Journal of Andrology, 2022, 24, 266.	0.8	9

#	Article	IF	CITATIONS
253	Design and construction of a stereochemically diverse piperazine-based DNA-encoded chemical library. Bioorganic and Medicinal Chemistry, 2021, 48, 116387.	1.4	9
254	Shaping the sperm head: an ER enzyme leaves its mark. Journal of Clinical Investigation, 2006, 116, 2860-2863.	3.9	9
255	The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice. BMC Biology, 2022, 20, .	1.7	9
256	Appetite for reproduction: dietary restriction, aging and the mammalian gonad. Journal of Biology, 2008, 7, 23.	2.7	8
257	Testicular cell adhesion molecule 1 (TCAM1) is not essential for fertility. Molecular and Cellular Endocrinology, 2010, 315, 246-253.	1.6	8
258	Toward a rapid and reversible male pill. Science, 2015, 350, 385-386.	6.0	8
259	Clinical performance of a semi-quantitative assay for SARS-CoV2 IgG and SARS-CoV2 IgM antibodies. Clinica Chimica Acta, 2020, 510, 790-795.	0.5	8
260	CIB4 is essential for the haploid phase of spermatogenesis in miceâ€. Biology of Reproduction, 2020, 103, 235-243.	1.2	8
261	Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in miceâ€. Biology of Reproduction, 2020, 103, 205-222.	1.2	8
262	Niclosamide's potential direct targets in ovarian cancer. Biology of Reproduction, 2021, 105, 403-412.	1.2	7
263	Follistatin mediates learning and synaptic plasticity via regulation of Asic4 expression in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
264	PAM14, a Novel MRG- and Rb-Associated Protein, Is Not Required for Development and T-Cell Function in Mice. Molecular and Cellular Biology, 2004, 24, 8366-8373.	1.1	6
265	Reply to Mottershead et al.: GDF9:BMP15 heterodimers are potent regulators of ovarian functions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2258-E2258.	3.3	6
266	Metabolism of a Selective Serotonin and Norepinephrine Reuptake Inhibitor Duloxetine in Liver Microsomes and Mice. Drug Metabolism and Disposition, 2022, 50, 128-139.	1.7	6
267	Local versus systemic control of bone and skeletal muscle mass by components of the transforming growth factor-l² signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
268	Absence of Inhibin Alpha and Retinoblastoma Protein Leads to Early Sertoli Cell Dysfunction. PLoS ONE, 2010, 5, e11797.	1.1	5
269	Amino Acid 72 of Mouse and Human GDF9 Mature Domain Is Responsible for Altered Homodimer Bioactivities but Has Subtle Effects on GDF9:BMP15 Heterodimer Activities1. Biology of Reproduction, 2014, 91, 142.	1.2	4
270	Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes?. Reproductive BioMedicine Online, 2007, 14, 201-207.	1.1	3

#	Article	IF	CITATIONS
271	A special issue on contraceptive development: past, present, and future. Biology of Reproduction, 2020, 103, 145-146.	1.2	3
272	Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of <i>Escherichia coli</i> Producing OXA-48. ACS Infectious Diseases, 2021, 7, 3345-3354.	1.8	3
273	Chromosomal Variants and Gene Expression Dysregulation in Endometriosis Biology of Reproduction, 2008, 78, 166-167.	1.2	2
274	MicroRNAs in Human Ovarian Cancer Biology of Reproduction, 2008, 78, 200-200.	1.2	2
275	Society for Reproductive Biology Founders' Lecture 2007. Insights into germ cell biology: from the bench to the clinic. Reproduction, Fertility and Development, 2007, 19, 783.	0.1	1
276	Identifying Metabolic Pathways of câ€MET Tyrosine Kinase Inhibitor Tepotinib in Human and Mouse Liver Microsomes. FASEB Journal, 2020, 34, 1-1.	0.2	1
277	Poreless eggshells. Journal of Clinical Investigation, 2015, 125, 4005-4007.	3.9	1
278	Cyp1a2â€knockout increases the systemic exposure of a serotonin and norepinephrine reuptake inhibitor duloxetine in mice. FASEB Journal, 2022, 36, .	0.2	1
279	Mouse models to identify genes throughout oogenesis. , 0, , 73-80.		0
280	Reply to Liu et al.: ALK5-mediated tumor suppressor signaling through SMAD2 and SMAD3 in the uterus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9166-9167.	3.3	0
281	CYP3A Mediated Metabolism of Tyrosine Kinase Inhibitor Pexidartinib and Alleviated its Cytotoxicity to HepG2 Cells. FASEB Journal, 2021, 35, .	0.2	0
282	TRANSGENIC MOUSE MODELS TO STUDY INHIBIN AND ACTIVIN. , 2001, , 279-327.		0
283	SEXUALLY DIMORPHIC FUNCTIONS OF SMAD3 IN GONADAL TUMORIGENESIS. Biology of Reproduction, 2007, 77, 82-82.	1.2	0
284	TESTICULAR CELL ADHESION MOLECULE 1 (TCAM1): AN IMPORTANT MEDIATOR OF GERM CELL-SERTOLI CELL INTERACTIONS?. Biology of Reproduction, 2007, 77, 167-168.	1.2	0
285	IDENTIFICATION OF A NOVEL INTERCELLULAR BRIDGE PROTEIN, IBP2. Biology of Reproduction, 2007, 77, 115-115.	1.2	0
286	Conditional Inactivation of Retinoblastoma Protein (RB1) in Sertoli Cells Causes Progressive Infertility Biology of Reproduction, 2008, 78, 54-54.	1.2	0
287	Activin Regulates KIT mRNA and Protein in the Postnatal Mouse Testis Biology of Reproduction, 2008, 78, 130-130.	1.2	0