David A. Bird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/308739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems. Plant Physiology, 2017, 174, 1028-1036.	4.8	45
2	Arabidopsis ketoacyl 0A synthase 16 (KCS16) forms C ₃₆ /C ₃₈ acyl precursors for leaf trichome and pavement surface wax. Plant, Cell and Environment, 2017, 40, 1761-1776.	5.7	54
3	The composition of surface wax on trichomes of <i>Arabidopsis thaliana</i> differs from wax on other epidermal cells. Plant Journal, 2016, 88, 762-774.	5.7	40
4	Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development. Planta, 2016, 244, 843-851.	3.2	12
5	Acyl-Lipid Metabolism. The Arabidopsis Book, 2013, 11, e0161.	0.5	974
6	<i>Arabidopsis</i> ABCG Transporters, Which Are Required for Export of Diverse Cuticular Lipids, Dimerize in Different Combinations. Plant Cell, 2010, 22, 3066-3075.	6.6	237
7	Acyl-Lipid Metabolism. The Arabidopsis Book, 2010, 8, e0133.	0.5	287
8	Integrating Cryo-Fixation and Electron Microscopy with Molecular Tools to Understand How Plants Secrete their Cell Walls. Microscopy and Microanalysis, 2009, 15, 82-83.	0.4	0
9	<i>Arabidopsis</i> LTPG Is a Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein Required for Export of Lipids to the Plant Surface Â. Plant Cell, 2009, 21, 1230-1238.	6.6	295
10	Plant ABC proteins – a unified nomenclature and updated inventory. Trends in Plant Science, 2008, 13, 151-159.	8.8	652
11	The role of ABC transporters in cuticular lipid secretion. Plant Science, 2008, 174, 563-569.	3.6	45
12	Functions, regulation and cellular localization of plant cyclinâ€dependent kinase inhibitors. Journal of Microscopy, 2008, 231, 234-246.	1.8	26
13	Identification of the Wax Ester Synthase/Acyl-Coenzyme A:Diacylglycerol Acyltransferase WSD1 Required for Stem Wax Ester Biosynthesis in Arabidopsis Â. Plant Physiology, 2008, 148, 97-107.	4.8	319
14	The Cytochrome P450 Enzyme CYP96A15 Is the Midchain Alkane Hydroxylase Responsible for Formation of Secondary Alcohols and Ketones in Stem Cuticular Wax of Arabidopsis. Plant Physiology, 2007, 145, 653-667.	4.8	267
15	The Distribution and Conformation of Very Long-Chain Plant Wax Components in a Lipid Bilayer. Journal of Physical Chemistry B, 2007, 111, 8702-8704.	2.6	7
16	Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion ^{â€} . Plant Journal, 2007, 52, 485-498.	5.7	349
17	Arabidopsis cyclin-dependent kinase inhibitors are nuclear-localized and show different localization patterns within the nucleoplasm. Plant Cell Reports, 2007, 26, 861-872.	5.6	31
18	Sanguinarine Biosynthesis Is Associated with the Endoplasmic Reticulum in Cultured Opium Poppy Cells after Elicitor Treatment. Plant Physiology, 2005, 138, 173-183.	4.8	80

DAVID A. BIRD

#	Article	IF	CITATIONS
19	Opium poppy: a model system to investigate alkaloid biosynthesis in plants. Canadian Journal of Botany, 2005, 83, 1189-1206.	1.1	11
20	Can Arabidopsis make complex alkaloids?. Trends in Plant Science, 2004, 9, 116-122.	8.8	101
21	A Tale of Three Cell Types: Alkaloid Biosynthesis Is Localized to Sieve Elements in Opium Poppy. Plant Cell, 2003, 15, 2626-2635.	6.6	170
22	Chapter seven Multiple levels of control in the regulation of alkaloid biosynthesis. Recent Advances in Phytochemistry, 2003, 37, 143-180.	0.5	2
23	Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta, 2001, 213, 888-897.	3.2	60
24	Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures. In Vitro Cellular and Developmental Biology - Plant, 1998, 34, 69-79.	2.1	28