
W W Nazaroff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/308685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indoor ozone: Concentrations and influencing factors. Indoor Air, 2022, 32, .	2.0	61
2	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Environmental Science & Technology, 2022, 56, 1125-1137.	4.6	109
3	Indoor aerosol science aspects of SARSâ€CoVâ€2 transmission. Indoor Air, 2022, 32, .	2.0	36
4	How Do Indoor Environments Affect Air Pollution Exposure?. Environmental Science & Technology, 2021, 55, 100-108.	4.6	48
5	Indoor emissions of total and fluorescent supermicron particles during HOMEChem. Indoor Air, 2021, 31, 88-98.	2.0	20
6	Indoor black carbon and brown carbon concentrations from cooking and outdoor penetration: insights from the HOMEChem study. Environmental Sciences: Processes and Impacts, 2021, 23, 1476-1487.	1.7	10
7	Residential airâ€change rates: A critical review. Indoor Air, 2021, 31, 282-313.	2.0	66
8	Observing ozone chemistry in an occupied residence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
9	Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection, 2021, 110, 89-96.	1.4	264
10	Intake Fractions for Volatile Organic Compounds in Two Occupied California Residences. Environmental Science and Technology Letters, 2021, 8, 386-391.	3.9	5
11	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	6.0	192
12	High-Resolution Exposure Assessment for Volatile Organic Compounds in Two California Residences. Environmental Science & Technology, 2021, 55, 6740-6751.	4.6	33
13	Large Emissions of Low-Volatility Siloxanes during Residential Oven Use. Environmental Science and Technology Letters, 2021, 8, 519-524.	3.9	16
14	Volatile organic compound emissions during HOMEChem. Indoor Air, 2021, 31, 2099-2117.	2.0	48
15	Transmission of SARSâ€CoVâ€⊋ by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 2021, 31, 314-323.	2.0	505
16	The COVIDâ€19 pandemic is a global indoor air crisis that should lead to change: A message commemorating 30 years of Indoor Air. Indoor Air, 2021, 31, 1683-1686.	2.0	19
17	Indoor acids and bases. Indoor Air, 2020, 30, 559-644.	2.0	67
18	Surface Emissions Modulate Indoor SVOC Concentrations through Volatility-Dependent Partitioning. Environmental Science & Technology, 2020, 54, 6751-6760.	4.6	43

#	Article	IF	CITATIONS
19	Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures. Environmental Science & Technology, 2020, 54, 7107-7116.	4.6	127
20	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	4.8	933
21	Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. Science Advances, 2020, 6, eaay8973.	4.7	105
22	Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environmental Sciences: Processes and Impacts, 2019, 21, 1280-1300.	1.7	140
23	Characterizing Airborne Phthalate Concentrations and Dynamics in a Normally Occupied Residence. Environmental Science & Technology, 2019, 53, 7337-7346.	4.6	49
24	Clothing-Mediated Exposures to Chemicals and Particles. Environmental Science & Technology, 2019, 53, 5559-5575.	4.6	81
25	Sources and dynamics of semivolatile organic compounds in a singleâ€ f amily residence in northern California. Indoor Air, 2019, 29, 645-655.	2.0	53
26	Characterizing sources and emissions of volatile organic compounds in a northern California residence using space―and timeâ€resolved measurements. Indoor Air, 2019, 29, 630-644.	2.0	70
27	Heterogeneous Ozonolysis of Squalene: Gas-Phase Products Depend on Water Vapor Concentration. Environmental Science & Technology, 2019, 53, 14441-14448.	4.6	48
28	Embracing microbes in exposure science. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 1-10.	1.8	23
29	Detailed investigation of ventilation rates and airflow patterns in a northern California residence. Indoor Air, 2018, 28, 572-584.	2.0	50
30	Fluorescent biological aerosol particles: Concentrations, emissions, and exposures in a northern California residence. Indoor Air, 2018, 28, 559-571.	2.0	22
31	Clothing as a transport vector for airborne particles: Chamber study. Indoor Air, 2018, 28, 404-414.	2.0	47
32	The particles around us. Indoor Air, 2018, 28, 215-217.	2.0	8
33	The air around us. Indoor Air, 2018, 28, 3-5.	2.0	10
34	Measurement of NO ₃ and N ₂ O ₅ in a Residential Kitchen. Environmental Science and Technology Letters, 2018, 5, 595-599.	3.9	44
35	Passing the torch. Indoor Air, 2018, 28, 471-472.	2.0	1
36	Exploring temporal patterns of bacterial and fungal DNA accumulation on a ventilation system filter for a Singapore university library. PLoS ONE, 2018, 13, e0200820.	1.1	9

#	Article	IF	CITATIONS
37	Longitudinal assessment of thermal and perceived air quality acceptability in relation to temperature, humidity, and CO2 exposure in Singapore. Building and Environment, 2017, 115, 80-90.	3.0	38
38	Best Paper Awards. Indoor Air, 2017, 27, 243-245.	2.0	2
39	Predicted percentage dissatisfied with ankle draft. Indoor Air, 2017, 27, 852-862.	2.0	32
40	Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air, 2017, 27, 791-802.	2.0	76
41	Ultrafine Particle Production from the Ozonolysis of Personal Care Products. Environmental Science & Technology, 2017, 51, 12737-12744.	4.6	4
42	Planning for Publication. Indoor Air, 2017, 27, 865-867.	2.0	0
43	Inhalation intake fraction of particulate matter from localized indoor emissions. Building and Environment, 2017, 123, 14-22.	3.0	50
44	Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons. Indoor Air, 2017, 27, 690-702.	2.0	102
45	Influence of moisturizer and relative humidity on human emissions of fluorescent biological aerosol particles. Indoor Air, 2017, 27, 587-598.	2.0	24
46	DNA accumulation on ventilation system filters in university buildings in Singapore. PLoS ONE, 2017, 12, e0186295.	1.1	6
47	Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. Microbiome, 2017, 5, 128.	4.9	45
48	Growth of organic films on indoor surfaces. Indoor Air, 2017, 27, 1101-1112.	2.0	139
49	Investigating CO2 removal by Ca- and Mg-based sorbents with application to indoor air treatment. Building and Environment, 2016, 110, 161-172.	3.0	18
50	Contributions of pioneering women in indoor environment and health. Indoor Air, 2016, 26, 663-665.	2.0	0
51	Achievement indicators for researchers who publish in Indoor Air. Indoor Air, 2016, 26, 833-835.	2.0	1
52	Indoor bioaerosol dynamics. Indoor Air, 2016, 26, 61-78.	2.0	198
53	Chamber bioaerosol study: human emissions of sizeâ€resolved fluorescent biological aerosol particles. Indoor Air, 2016, 26, 193-206.	2.0	118
54	Lost in the archive. Indoor Air, 2016, 26, 155-156.	2.0	1

#	Article	IF	CITATIONS
55	Real-time monitoring of personal exposures to carbon dioxide. Building and Environment, 2016, 104, 59-67.	3.0	31
56	Pilot study of sources and concentrations of size-resolved airborne particles in a neonatal intensive care unit. Building and Environment, 2016, 106, 10-19.	3.0	11
57	Bioaerosol deposition on an air-conditioning cooling coil. Atmospheric Environment, 2016, 144, 257-265.	1.9	26
58	Teaching indoor environmental quality. Indoor Air, 2016, 26, 515-516.	2.0	11
59	Volatile Organic Compound Emissions from Humans Indoors. Environmental Science & Technology, 2016, 50, 12686-12694.	4.6	193
60	Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity. Atmospheric Environment, 2016, 125, 15-23.	1.9	48
61	Sensation of draft at uncovered ankles for women exposed to displacement ventilation and underfloor air distribution systems. Building and Environment, 2016, 96, 228-236.	3.0	51
62	Indoor and outdoor particles in an air-conditioned building during and after the 2013 haze in Singapore. Building and Environment, 2016, 99, 73-81.	3.0	39
63	Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit. PLoS ONE, 2016, 11, e0154991.	1.1	33
64	Indoor chemistry: research opportunities and challenges. Indoor Air, 2015, 25, 357-361.	2.0	79
65	Previsualizing a post-combustion world. Indoor Air, 2015, 25, 569-571.	2.0	0
66	Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children's classrooms. Indoor Air, 2015, 25, 641-652.	2.0	118
67	New directions: Potential climate and productivity benefits from CO 2 capture in commercial buildings. Atmospheric Environment, 2015, 103, 378-380.	1.9	18
68	Particle exposure during the 2013 haze in Singapore: Importance of the built environment. Building and Environment, 2015, 93, 14-23.	3.0	46
69	Indoor Emissions as a Primary Source of Airborne Allergenic Fungal Particles in Classrooms. Environmental Science & Technology, 2015, 49, 5098-5106.	4.6	73
70	Exposure to particulate matter and ozone of outdoor origin inÂSingapore. Building and Environment, 2015, 93, 3-13.	3.0	22
71	Siloxanes Are the Most Abundant Volatile Organic Compound Emitted from Engineering Students in a Classroom. Environmental Science and Technology Letters, 2015, 2, 303-307.	3.9	124
72	Cooling efficiency of a brushless direct current stand fan. Building and Environment, 2015, 85, 196-204.	3.0	42

#	Article	IF	CITATIONS
73	Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate. PLoS ONE, 2015, 10, e0122310.	1.1	37
74	Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes. PLoS ONE, 2015, 10, e0128022.	1.1	168
75	Changes three. Indoor Air, 2014, 24, 1-2.	2.0	2
76	ISIAQ Academy Awards 2014. Indoor Air, 2014, 24, 447-449.	2.0	2
77	Getting the magnitude right. Indoor Air, 2014, 24, 337-338.	2.0	1
78	Sizeâ€resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air, 2014, 24, 604-617.	2.0	93
79	Dermal Uptake of Organic Vapors Commonly Found in Indoor Air. Environmental Science & Technology, 2014, 48, 1230-1237.	4.6	161
80	Assessing the aerodynamic diameters of taxon-specific fungal bioaerosols by quantitative PCR and next-generation DNA sequencing. Journal of Aerosol Science, 2014, 78, 1-10.	1.8	41
81	Anisokinetic Shrouded Nozzle System for Constant Low-Flow Rate Aerosol Sampling from Turbulent Duct Flow. Aerosol Science and Technology, 2014, 48, 90-98.	1.5	2
82	Illumination, lighting technologies, and indoor environmental quality. Indoor Air, 2014, 24, 225-226.	2.0	7
83	Calibration of the Ogawa passive ozone sampler for aircraft cabins. Atmospheric Environment, 2013, 65, 21-24.	1.9	7
84	Achieving Deep Cuts in the Carbon Intensity of U.S. Automobile Transportation by 2050: Complementary Roles for Electricity and Biofuels. Environmental Science & Technology, 2013, 47, 9044-9052.	4.6	18
85	Exploring the consequences of climate change for indoor air quality. Environmental Research Letters, 2013, 8, 015022.	2.2	84
86	Atmospheric ozone levels encountered by commercial aircraft on transatlantic routes. Environmental Research Letters, 2013, 8, 014006.	2.2	12
87	Advice for aspiring scholars. Indoor Air, 2013, 23, 441-441.	2.0	0
88	Changes in the Editorial Team forIndoor Air. Indoor Air, 2013, 23, 89-92.	2.0	2
89	Four principles for achieving good indoor air quality. Indoor Air, 2013, 23, 353-356.	2.0	25
90	Between Scylla and Charybdis: energy, carbon dioxide, and indoor environmental quality. Indoor Air, 2013, 23, 265-267.	2.0	0

#	Article	IF	CITATIONS
91	Low-cost coarse airborne particulate matter sensing for indoor occupancy detection. , 2013, , .		22
92	Intake to Production Ratio: A Measure of Exposure Intimacy for Manufactured Chemicals. Environmental Health Perspectives, 2012, 120, 1678-1683.	2.8	21
93	Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environmental Research Letters, 2012, 7, 014011.	2.2	42
94	ISIAQ and the Academy of Fellows. Indoor Air, 2012, 22, 353-355.	2.0	9
95	Intake fractions of primary conserved air pollutants emitted from on-road vehicles in the United States. Atmospheric Environment, 2012, 63, 298-305.	1.9	28
96	Global Intraurban Intake Fractions for Primary Air Pollutants from Vehicles and Other Distributed Sources. Environmental Science & 2017, Technology, 2012, 46, 3415-3423.	4.6	105
97	Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME Journal, 2012, 6, 1801-1811.	4.4	211
98	Max von Pettenkofer Award. Indoor Air, 2012, 22, 443-445.	2.0	7
99	Rapid Methods to Estimate Potential Exposure to Semivolatile Organic Compounds in the Indoor Environment. Environmental Science & Technology, 2012, 46, 11171-11178.	4.6	184
100	Sizeâ€resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air, 2012, 22, 339-351.	2.0	315
101	SVOC exposure indoors: fresh look at dermal pathways. Indoor Air, 2012, 22, 356-377.	2.0	331
102	Open Access Musings. Indoor Air, 2012, 22, 263-265.	2.0	0
103	Human Occupancy as a Source of Indoor Airborne Bacteria. PLoS ONE, 2012, 7, e34867.	1.1	404
104	Grand Challenges for Life-Cycle Assessment of Biofuels. Environmental Science & Technology, 2011, 45, 1751-1756.	4.6	148
105	Reflections on the state of research: indoor environmental quality. Indoor Air, 2011, 21, 219-230.	2.0	27
106	Commuter Exposure to Vehicle Exhaust Plumes in New Delhi, India. Epidemiology, 2011, 22, S146.	1.2	0
107	Ultrafine particle concentrations and exposures in seven residences in northern California. Indoor Air, 2011, 21, 132-144.	2.0	127
108	Ultrafine particle concentrations and exposures in six elementary school classrooms in northern California. Indoor Air, 2011, 21, 77-87.	2.0	78

#	Article	IF	CITATIONS
109	Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air, 2011, 21, 191-204.	2.0	529
110	Why we write. Indoor Air, 2011, 21, 1-2.	2.0	2
111	Commemorating 20 years of Indoor Air. Indoor Air, 2011, 21, 177-178.	2.0	3
112	Best Paper Awards: Indoor Air (2008-2010). Indoor Air, 2011, 21, 265-266.	2.0	1
113	Norovirus, gastroenteritis, and indoor environmental quality. Indoor Air, 2011, 21, 353-356.	2.0	21
114	Ultrafine particle concentrations and exposures in four high-rise Beijing apartments. Atmospheric Environment, 2011, 45, 7574-7582.	1.9	41
115	Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmospheric Environment, 2011, 45, 4470-4480.	1.9	173
116	Data center design and location: Consequences for electricity use and greenhouse-gas emissions. Building and Environment, 2011, 46, 990-998.	3.0	48
117	Towards improved characterization of high-risk releases using heterogeneous indoor sensor systems. Building and Environment, 2011, 46, 438-447.	3.0	21
118	Intake Fractions for Vehicle Emissions in 88 Worldwide Urban Areas. Epidemiology, 2011, 22, S209.	1.2	1
119	Intake fraction of nonreactive motor vehicle exhaust in Hong Kong. Atmospheric Environment, 2010, 44, 1913-1918.	1.9	54
120	SVOC partitioning between the gas phase and settled dust indoors. Atmospheric Environment, 2010, 44, 3609-3620.	1.9	298
121	Can combining economizers with improved filtration save energy and protect equipment in data centers?. Building and Environment, 2010, 45, 718-726.	3.0	32
122	Investigating ozone-induced decomposition of surface-bound permethrin for conditions in aircraft cabins. Indoor Air, 2010, 20, 61-71.	2.0	5
123	Taking stock:Indoor Airis an international, multidisciplinary, research journal. Indoor Air, 2010, 20, 93-94.	2.0	3
124	What we don't know. Indoor Air, 2010, 20, 271-272.	2.0	8
125	Particle puzzle pieces. Indoor Air, 2010, 20, 355-356.	2.0	0
126	Effect of interior door position on room-to-room differences in residential pollutant concentrations after short-term releases. Atmospheric Environment, 2009, 43, 706-714.	1.9	34

#	Article	IF	CITATIONS
127	Citations, impact factors, andIndoor Air: a look behind the numbers. Indoor Air, 2009, 19, 1-2.	2.0	2
128	The most cited articles in <i>Indoor Air</i> , through 18 years. Indoor Air, 2009, 19, 91-92.	2.0	4
129	Inhalation intake fraction of pollutants from episodic indoor emissions. Building and Environment, 2008, 43, 269-277.	3.0	118
130	Effectiveness of urban shelter-in-place. III: Commercial districts. Building Simulation, 2008, 1, 144-157.	3.0	8
131	Climate change, building energy use, and indoor environmental quality. Indoor Air, 2008, 18, 259-260.	2.0	13
132	Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. Atmospheric Environment, 2008, 42, 642-654.	1.9	162
133	Particle concentrations in data centers. Atmospheric Environment, 2008, 42, 5978-5990.	1.9	28
134	Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products. Atmospheric Environment, 2008, 42, 8234-8245.	1.9	114
135	New Directions: It's time to put the human receptor into air pollution control policy. Atmospheric Environment, 2008, 42, 6565-6566.	1.9	9
136	Semivolatile organic compounds in indoor environments. Atmospheric Environment, 2008, 42, 9018-9040.	1.9	661
137	Ozone Levels in Passenger Cabins of Commercial Aircraft on North American and Transoceanic Routes. Environmental Science & Technology, 2008, 42, 3938-3943.	4.6	49
138	Ozone-Initiated Chemistry in an Occupied Simulated Aircraft Cabin. Environmental Science & Technology, 2007, 41, 6177-6184.	4.6	156
139	Anatomy of a Journal:Indoor Air. Indoor Air, 2007, 17, 257-258.	2.0	0
140	Effectiveness of urban shelter-in-place—l: Idealized conditions. Atmospheric Environment, 2007, 41, 4962-4976.	1.9	20
141	Effectiveness of urban shelter-in-place—ll: Residential districts. Atmospheric Environment, 2007, 41, 7082-7095.	1.9	19
142	Intake-to-delivered-energy ratios for central station and distributed electricity generation in California. Atmospheric Environment, 2007, 41, 9159-9172.	1.9	7
143	Influence of indoor transport and mixing time scales on the performance of sensor systems for characterizing contaminant releases. Atmospheric Environment, 2007, 41, 9530-9542.	1.9	29
144	Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone:Â A Bench-Scale Chamber Study. Environmental Science & Technology, 2006, 40, 4421-4428.	4.6	218

#	Article	IF	CITATIONS
145	Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Indoor Air, 2006, 16, 179-191.	2.0	262
146	Systems approach to evaluating sensor characteristics for real-time monitoring of high-risk indoor contaminant releases. Atmospheric Environment, 2006, 40, 3490-3502.	1.9	45
147	Mitigating residential exposure to secondhand tobacco smoke. Atmospheric Environment, 2006, 40, 4408-4422.	1.9	8
148	Modeling residential exposure to secondhand tobacco smoke. Atmospheric Environment, 2006, 40, 4393-4407.	1.9	54
149	Inhalation intake of ambient air pollution in California's South Coast Air Basin. Atmospheric Environment, 2006, 40, 4381-4392.	1.9	71
150	Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmospheric Environment, 2006, 40, 6696-6710.	1.9	267
151	Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment, 2006, 40, 7164-7177.	1.9	31
152	California Power Sector Emissions: Statewide Inhalation Intake and Mortality Risk from Primary PM2.5 Emissions. Epidemiology, 2006, 17, S30.	1.2	0
153	Intake Fraction. , 2006, , 237-251.		5
154	Measuring research productivity. Indoor Air, 2005, 15, 382-382.	2.0	4
155	Inhalation of motor vehicle emissions: effects of urban population and land area. Atmospheric Environment, 2005, 39, 283-295.	1.9	85
156	Intake fraction of nonreactive vehicle emissions in US urban areas. Atmospheric Environment, 2005, 39, 1363-1371.	1.9	85
156 157		1.9 1.9	85 145
	39, 1363-1371. Analyzing a database of residential air leakage in the United States. Atmospheric Environment, 2005, 39,		
157	 39, 1363-1371. Analyzing a database of residential air leakage in the United States. Atmospheric Environment, 2005, 39, 3445-3455. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical 	1.9	145
157 158	 39, 1363-1371. Analyzing a database of residential air leakage in the United States. Atmospheric Environment, 2005, 39, 3445-3455. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmospheric Environment, 2005, 39, 4893-4900. Particle Deposition in Ventilation Ducts: Connectors, Bends and Developing Turbulent Flow. Aerosol 	1.9 1.9	145 78
157 158 159	 39, 1363-1371. Analyzing a database of residential air leakage in the United States. Atmospheric Environment, 2005, 39, 3445-3455. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmospheric Environment, 2005, 39, 4893-4900. Particle Deposition in Ventilation Ducts: Connectors, Bends and Developing Turbulent Flow. Aerosol Science and Technology, 2005, 39, 139-150. Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. 	1.9 1.9 1.5	145 78 36

#	Article	IF	CITATIONS
163	Inhalation of hazardous air pollutants from environmental tobacco smoke in US residences. Journal of Exposure Science and Environmental Epidemiology, 2004, 14, S71-S77.	1.8	111
164	Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmospheric Environment, 2004, 38, 2841-2865.	1.9	655
165	Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin. Atmospheric Environment, 2003, 37, 3455-3468.	1.9	94
166	Gas-phase organics in environmental tobacco smoke: 2. Exposure-relevant emission factors and indirect exposures from habitual smoking. Atmospheric Environment, 2003, 37, 5551-5561.	1.9	113
167	Modeling particle loss in ventilation ducts. Atmospheric Environment, 2003, 37, 5597-5609.	1.9	56
168	Predicting particle deposition on HVAC heat exchangers. Atmospheric Environment, 2003, 37, 5587-5596.	1.9	73
169	Determining Size-Specific Emission Factors for Environmental Tobacco Smoke Particles. Aerosol Science and Technology, 2003, 37, 780-790.	1.5	109
170	Particle Penetration Through Building Cracks. Aerosol Science and Technology, 2003, 37, 565-573.	1.5	158
171	Ozone Interactions with Carpet:  Secondary Emissions of Aldehydes. Environmental Science & Technology, 2002, 36, 2185-2192.	4.6	154
172	Indoor Particulate Matter of Outdoor Origin:Â Importance of Size-Dependent Removal Mechanisms. Environmental Science & Technology, 2002, 36, 200-207.	4.6	346
173	Peer Reviewed: Defining Intake Fraction. Environmental Science & amp; Technology, 2002, 36, 206A-211A.	4.6	243
174	Gas-Phase Organics in Environmental Tobacco Smoke. 1. Effects of Smoking Rate, Ventilation, and Furnishing Level on Emission Factors. Environmental Science & Technology, 2002, 36, 846-853.	4.6	130
175	The rate of ozone uptake on carpet: mathematical modeling. Atmospheric Environment, 2002, 36, 1749-1756.	1.9	55
176	Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 2002, 36, 1811-1819.	1.9	331
177	Defining intake fraction. Environmental Science & amp; Technology, 2002, 36, 207A-211A.	4.6	31
178	Dynamic Behavior of Semivolatile Organic Compounds in Indoor Air. 2. Nicotine and Phenanthrene with Carpet and Wallboard. Environmental Science & Technology, 2001, 35, 560-567.	4.6	75
179	Guest Editorial. Indoor Air and the Public Good. Indoor Air, 2001, 11, 143-144.	2.0	12
180	Environmental tobacco smoke particles in multizone indoor environments. Atmospheric Environment, 2001, 35, 2053-2067.	1.9	86

#	Article	IF	CITATIONS
181	Modeling pollutant penetration across building envelopes. Atmospheric Environment, 2001, 35, 4451-4462.	1.9	222
182	Inhalation Transfer Factors for Air Pollution Health Risk Assessment. Journal of the Air and Waste Management Association, 2000, 50, 1688-1699.	0.9	91
183	MODELING INDOOR PARTICLE DEPOSITION FROM TURBULENT FLOW ONTO SMOOTH SURFACES. Journal of Aerosol Science, 2000, 31, 463-476.	1.8	558
184	The Rate of Ozone Uptake on Carpets:Â Experimental Studies. Environmental Science & Technology, 2000, 34, 4963-4968.	4.6	85
185	Effects of variable wind speed and direction on radon transport from soil into buildings: model development and exploratory results. Atmospheric Environment, 1999, 33, 2157-2168.	1.9	40
186	RADON ENTRY INTO HOUSES. Health Physics, 1999, 77, 183-191.	0.3	12
187	Radon hazards. , 1999, , 499-501.		0
188	Framework for Evaluating Measures to Control Nosocomial Tuberculosis Transmission. Indoor Air, 1998, 8, 205-218.	2.0	50
189	Nicotine as a Marker for Environmental Tobacco Smoke: Implications of Sorption on Indoor Surface Materials. Journal of the Air and Waste Management Association, 1998, 48, 959-968.	0.9	27
190	Indoor Air Quality Impacts of Ventilation Ducts: Ozone Removal and Emissions of Volatile Organic Compounds. Journal of the Air and Waste Management Association, 1998, 48, 941-952.	0.9	68
191	Reducing the Risk of Accidental Death Due to Vehicle-Related Carbon Monoxide Poisoning. Journal of the Air and Waste Management Association, 1998, 48, 899-906.	0.9	8
192	Effect of Small-Scale Obstructions and Surface Textures on Particle Deposition from Natural Convection Flow. Aerosol Science and Technology, 1997, 27, 709-725.	1.5	23
193	Dynamic Behavior of Semivolatile Organic Compounds in Indoor Air. 1. Nicotine in a Stainless Steel Chamber. Environmental Science & Technology, 1997, 31, 2554-2561.	4.6	53
194	Nonlinear Least-Squares Minimization Applied to Tracer Gas Decay for Determining Airflow Rates in a Two-Zone Building. Indoor Air, 1997, 7, 64-75.	2.0	30
195	Stationary and time-dependent indoor tracer-gas concentration profiles measured by OP-FTIR remote sensing and SBFM-computed tomography. Atmospheric Environment, 1997, 31, 727-740.	1.9	44
196	Particle Deposition from Natural Convection Enclosure Flow Onto Smooth Surfaces. Aerosol Science and Technology, 1996, 25, 359-374.	1.5	50
197	Gas-Phase Transport and Sorption of Benzene in Soil. Environmental Science & Technology, 1996, 30, 2178-2186.	4.6	19
198	Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination. Environmental Science & Technology, 1996, 30, 2948-2957.	4.6	69

#	Article	IF	CITATIONS
199	The effect of steady winds on radon-222 entry from soil into houses. Atmospheric Environment, 1996, 30, 1167-1176.	1.9	40
200	Novel approach for tomographic reconstruction of gas concentration distributions in air: Use of smooth basis functions and simulated annealing. Atmospheric Environment, 1996, 30, 929-940.	1.9	63
201	Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation. Water Resources Research, 1996, 32, 547-560.	1.7	29
202	Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control. Journal of the Air and Waste Management Association, 1996, 46, 869-882.	0.9	113
203	Transport and Sorption of Organic Gases in Activated Carbon. Journal of Environmental Engineering, ASCE, 1996, 122, 169-175.	0.7	19
204	Transport and Sorption of Water Vapor in Activated Carbon. Journal of Environmental Engineering, ASCE, 1996, 122, 176-182.	0.7	10
205	<title>Measurement of tracer gas distributions using an open-path FTIR system coupled with computed tomography</title> . , 1995, , .		1
206	Mixing of a Point-Source Indoor Pollutant by Forced Convection. Indoor Air, 1995, 5, 204-214.	2.0	51
207	Effectiveness of Smokeless Ashtrays. Journal of the Air and Waste Management Association, 1995, 45, 494-500.	0.9	3
208	Imaging Indoor Tracer-Gas Concentrations with Computed Tomography: Experimental Results with a Remote Sensing FTIR System. AIHA Journal, 1994, 55, 395-402.	0.4	52
209	Mixing of a Point Source Pollutant by Natural Convection Flow within a Room. Indoor Air, 1994, 4, 114-122.	2.0	80
210	On the measurement of 218Po diffusivity using the two-filter method. Journal of Aerosol Science, 1994, 25, 689-697.	1.8	6
211	Deposition of Tobacco Smoke Particles in a Low Ventilation Room. Aerosol Science and Technology, 1994, 20, 194-206.	1.5	89
212	Particle Filter Based on Thermophoretic Deposition from Natural Convection Flow. Aerosol Science and Technology, 1994, 20, 227-238.	1.5	35
213	Transport and sorption of volatile organic compounds and water vapor within dry soil grains. Environmental Science & Technology, 1994, 28, 322-330.	4.6	58
214	Predicting Regional Lung Deposition of Environmental Tobacco Smoke Particles. Aerosol Science and Technology, 1993, 19, 243-254.	1.5	32
215	Characteristics of airborne particles inside southern California museums. Atmospheric Environment Part A General Topics, 1993, 27, 697-711.	1.3	40
216	Removal of reactive gases at indoor surfaces: Combining mass transport and surface kinetics. Atmospheric Environment Part A General Topics, 1993, 27, 2039-2050.	1.3	140

#	Article	IF	CITATIONS
217	Transport of subsurface contaminants into buildings. Environmental Science & Technology, 1992, 26, 2058-2066.	4.6	101
218	Radon transport from soil to air. Reviews of Geophysics, 1992, 30, 137-160.	9.0	533
219	Numerical investigations of the deposition of unattached 218Po and 212Pb from natural convection enclosure flow. Journal of Aerosol Science, 1992, 23, 339-352.	1.8	8
220	Protecting museum collections from soiling due to the deposition of airborne particles. Atmospheric Environment Part A General Topics, 1991, 25, 841-852.	1.3	65
221	Protection of works of art from damage due to atmospheric ozone. Atmospheric Environment Part A General Topics, 1991, 25, 441-451.	1.3	21
222	Particle Deposition in Museums: Comparison of Modeling and Measurement Results. Aerosol Science and Technology, 1990, 13, 332-348.	1.5	67
223	Concentration and fate of airborne particles in museums. Environmental Science & Technology, 1990, 24, 66-77.	4.6	58
224	Nitric acid concentrations in southern California museums. Environmental Science & Technology, 1990, 24, 1004-1013.	4.6	28
225	Indoor radon: Exploring U.S. federal policy for controlling human exposures. Environmental Science & Technology, 1990, 24, 774-782.	4.6	27
226	Release of Ethanol to the Atmosphere During Use of Consumer Cleaning Products. Journal of the Air and Waste Management Association, 1990, 40, 1114-1120.	0.2	20
227	Thermophoresis in boundary layer flows. Journal of Aerosol Science, 1990, 21, 827-828.	1.8	4
228	Mass-transport aspects of pollutant removal at indoor surfaces. Environment International, 1989, 15, 567-584.	4.8	89
229	Technique for measuring the indoor radon-222 source potential of soil. Environmental Science & Technology, 1989, 23, 451-458.	4.6	23
230	Mathematical modeling of indoor aerosol dynamics. Environmental Science & Technology, 1989, 23, 157-166.	4.6	173
231	Particle deposition from a natural convection flow onto a vertical isothermal flat plate. Journal of Aerosol Science, 1989, 20, 138-139.	1.8	2
232	Entry by Pressure-driven Flow or Molecular Diffusion? A Reassessment of 222Rn Concentrations Measured in an Energy-Efficient House*. Health Physics, 1988, 55, 1005-1009.	0.3	9
233	Investigations of Soil as a Source of Indoor Radon. ACS Symposium Series, 1987, , 10-29.	0.5	26
234	Potable Water As a Source of Airborne 222Rn in U.S. Dwellings. Health Physics, 1987, 52, 281-295.	0.3	67

#	Article	IF	CITATIONS
235	Particle deposition from a natural convection flow onto a vertical isothermal flat plate. Journal of Aerosol Science, 1987, 18, 445-455.	1.8	70
236	Experiments on pollutant transport from soil into residential basements by pressure-driven airflow. Environmental Science & Technology, 1987, 21, 459-466.	4.6	86
237	Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science & Technology, 1986, 20, 924-934.	4.6	213
238	Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations. Environment International, 1986, 12, 429-438.	4.8	9
239	Distribution of airborne radon-222 concentrations in U.S. homes. Science, 1986, 234, 992-997.	6.0	229
240	Radon Entry Into Houses Having a Crawl Space. Health Physics, 1985, 48, 265-281.	0.3	39
241	Control of respirable particles in indoor air with portable air cleaners. Atmospheric Environment, 1985, 19, 1761-1771.	1.1	123
242	Radon transport into a detached one-story house with a basement. Atmospheric Environment, 1985, 19, 31-46.	1.1	86
243	Characterizing the sources, range, and environmental influences of radon 222 and its decay products. Science of the Total Environment, 1985, 45, 233-244.	3.9	14
244	Optimizing the Total-alpha Three-count Technique for Measuring Concentrations of Radon Progeny in Residences. Health Physics, 1984, 46, 395-405.	0.3	24
245	Time-averaged Indoor Rn Concentrations and Infiltration Rates Sampled in Four U.S. Cities. Health Physics, 1984, 47, 579-586.	0.3	10
246	Characterising the Source of Radon Indoors. Radiation Protection Dosimetry, 1984, 7, 23-39.	0.4	11
247	Radon daughter carousel: An automated instrument for measuring indoor concentrations of 218Po, 214Pb, and 214Bi. Review of Scientific Instruments, 1983, 54, 1227-1233.	0.6	6
248	Field data logger with EPROM storage. Review of Scientific Instruments, 1983, 54, 1252-1253.	0.6	2
249	Radon Concentrations and Infiltration Rates Measured in Conventional and Energy-efficient Houses. Health Physics, 1983, 45, 401-405.	0.3	41
250	A Rapid Spectroscopic Technique for Determining the Potential Alpha-energy Concentration of Radon Decay Products. Health Physics, 1983, 45, 509-523.	0.3	4
251	Automated System for Measuring Air-exchange Rate and Radon Concentration in Houses. Health Physics, 1983, 45, 525-537.	0.3	7
252	The use of mechanical ventilation with heat recovery for controlling radon and radondaughter concentrations in houses. Atmospheric Environment, 1981, 15, 263-270.	1.1	18

#	Article	IF	CITATIONS
253	Human disease from radon exposures: The impact of energy conservation in residential buildings. Energy and Buildings, 1979, 2, 209-215.	3.1	8
254	Environmental Tobacco Smoke Particles. , 0, , 245-274.		17
255	Particle Deposition in Ventilation Ducts: Connectors, Bends and Developing Turbulent Flow. , 0, .		8